Loading…

RDC-UNet++: An end-to-end network for multispectral satellite image enhancement

Multi-spectral satellite imagery is an ideal data source for comprehensive, real-time Earth observation (EO) due to its extensive coverage of Earth and regular updates. It has a wide range of applications in environment monitoring, disaster management, urban planning, weather forecasting etc. Yet, t...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing applications 2024-11, Vol.36, p.101293, Article 101293
Main Authors: Suresh, Shilpa, M., Ragesh Rajan, C.S., Asha, Dell’Acqua, Fabio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c183t-78ab073860511c7f318f5fa9ad5bd96e949c43f5abf0033e255d7513185d355e3
container_end_page
container_issue
container_start_page 101293
container_title Remote sensing applications
container_volume 36
creator Suresh, Shilpa
M., Ragesh Rajan
C.S., Asha
Dell’Acqua, Fabio
description Multi-spectral satellite imagery is an ideal data source for comprehensive, real-time Earth observation (EO) due to its extensive coverage of Earth and regular updates. It has a wide range of applications in environment monitoring, disaster management, urban planning, weather forecasting etc. Yet, the visual aspect of these images and thus the possibility to extract useful information using image processing techniques is often degraded due to fog, rain, dust, cloud, etc. Satellite image enhancement denotes a set of techniques designed to improve the quality of a satellite image such that the result is more useful for image analysis. The image enhancement aims to improve the quality of an image such that the enhanced image is more useful for image analysis than the original image for a particular remote sensing application. This study introduces a multi-spectral satellite image enhancement architecture called Residual Dense Connection-based UNet++ (RDC-UNet++). The unique design can improve multi-spectral images by enhancing their color and texture details. Extensive experimental studies on multi-spectral image datasets containing more than 150 images prove that the proposed architecture performs better than recent state-of-the-art satellite image enhancement algorithms.
doi_str_mv 10.1016/j.rsase.2024.101293
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_rsase_2024_101293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352938524001575</els_id><sourcerecordid>S2352938524001575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183t-78ab073860511c7f318f5fa9ad5bd96e949c43f5abf0033e255d7513185d355e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGp_gZfcS2qy2XQ3godSP6FYEHsOaTLRrNvdkkTFf2_WevDkaYZhnuGdB6FzRmeMsvlFMwtRR5gVtCiHSSH5ERoVXBRE8loc_-lP0STGhtKMCcaYHKH10_WSbB4hTaeXeNFh6CxJPckFd5A--_CGXR_w7r1NPu7BpKBbHHWCtvUJsN_pF8jQq-4M7KBLZ-jE6TbC5LeO0eb25nl5T1bru4flYkUMq3kiVa23tOL1nOYcpnKc1U44LbUVWyvnIEtpSu6E3jpKOYdCCFsJlteE5UIAHyN-uGtCH2MAp_YhhwlfilE1aFGN-tGiBi3qoCVTVwcKcrQPD0FF4yFHtz7k35Tt_b_8N3ibazU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RDC-UNet++: An end-to-end network for multispectral satellite image enhancement</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Suresh, Shilpa ; M., Ragesh Rajan ; C.S., Asha ; Dell’Acqua, Fabio</creator><creatorcontrib>Suresh, Shilpa ; M., Ragesh Rajan ; C.S., Asha ; Dell’Acqua, Fabio</creatorcontrib><description>Multi-spectral satellite imagery is an ideal data source for comprehensive, real-time Earth observation (EO) due to its extensive coverage of Earth and regular updates. It has a wide range of applications in environment monitoring, disaster management, urban planning, weather forecasting etc. Yet, the visual aspect of these images and thus the possibility to extract useful information using image processing techniques is often degraded due to fog, rain, dust, cloud, etc. Satellite image enhancement denotes a set of techniques designed to improve the quality of a satellite image such that the result is more useful for image analysis. The image enhancement aims to improve the quality of an image such that the enhanced image is more useful for image analysis than the original image for a particular remote sensing application. This study introduces a multi-spectral satellite image enhancement architecture called Residual Dense Connection-based UNet++ (RDC-UNet++). The unique design can improve multi-spectral images by enhancing their color and texture details. Extensive experimental studies on multi-spectral image datasets containing more than 150 images prove that the proposed architecture performs better than recent state-of-the-art satellite image enhancement algorithms.</description><identifier>ISSN: 2352-9385</identifier><identifier>EISSN: 2352-9385</identifier><identifier>DOI: 10.1016/j.rsase.2024.101293</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep learning ; Multi-spectral satellite images ; Remote sensing ; UNet</subject><ispartof>Remote sensing applications, 2024-11, Vol.36, p.101293, Article 101293</ispartof><rights>2024 The Author(s)</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c183t-78ab073860511c7f318f5fa9ad5bd96e949c43f5abf0033e255d7513185d355e3</cites><orcidid>0000-0002-9039-1548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Suresh, Shilpa</creatorcontrib><creatorcontrib>M., Ragesh Rajan</creatorcontrib><creatorcontrib>C.S., Asha</creatorcontrib><creatorcontrib>Dell’Acqua, Fabio</creatorcontrib><title>RDC-UNet++: An end-to-end network for multispectral satellite image enhancement</title><title>Remote sensing applications</title><description>Multi-spectral satellite imagery is an ideal data source for comprehensive, real-time Earth observation (EO) due to its extensive coverage of Earth and regular updates. It has a wide range of applications in environment monitoring, disaster management, urban planning, weather forecasting etc. Yet, the visual aspect of these images and thus the possibility to extract useful information using image processing techniques is often degraded due to fog, rain, dust, cloud, etc. Satellite image enhancement denotes a set of techniques designed to improve the quality of a satellite image such that the result is more useful for image analysis. The image enhancement aims to improve the quality of an image such that the enhanced image is more useful for image analysis than the original image for a particular remote sensing application. This study introduces a multi-spectral satellite image enhancement architecture called Residual Dense Connection-based UNet++ (RDC-UNet++). The unique design can improve multi-spectral images by enhancing their color and texture details. Extensive experimental studies on multi-spectral image datasets containing more than 150 images prove that the proposed architecture performs better than recent state-of-the-art satellite image enhancement algorithms.</description><subject>Deep learning</subject><subject>Multi-spectral satellite images</subject><subject>Remote sensing</subject><subject>UNet</subject><issn>2352-9385</issn><issn>2352-9385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGp_gZfcS2qy2XQ3godSP6FYEHsOaTLRrNvdkkTFf2_WevDkaYZhnuGdB6FzRmeMsvlFMwtRR5gVtCiHSSH5ERoVXBRE8loc_-lP0STGhtKMCcaYHKH10_WSbB4hTaeXeNFh6CxJPckFd5A--_CGXR_w7r1NPu7BpKBbHHWCtvUJsN_pF8jQq-4M7KBLZ-jE6TbC5LeO0eb25nl5T1bru4flYkUMq3kiVa23tOL1nOYcpnKc1U44LbUVWyvnIEtpSu6E3jpKOYdCCFsJlteE5UIAHyN-uGtCH2MAp_YhhwlfilE1aFGN-tGiBi3qoCVTVwcKcrQPD0FF4yFHtz7k35Tt_b_8N3ibazU</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Suresh, Shilpa</creator><creator>M., Ragesh Rajan</creator><creator>C.S., Asha</creator><creator>Dell’Acqua, Fabio</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9039-1548</orcidid></search><sort><creationdate>202411</creationdate><title>RDC-UNet++: An end-to-end network for multispectral satellite image enhancement</title><author>Suresh, Shilpa ; M., Ragesh Rajan ; C.S., Asha ; Dell’Acqua, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183t-78ab073860511c7f318f5fa9ad5bd96e949c43f5abf0033e255d7513185d355e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Multi-spectral satellite images</topic><topic>Remote sensing</topic><topic>UNet</topic><toplevel>online_resources</toplevel><creatorcontrib>Suresh, Shilpa</creatorcontrib><creatorcontrib>M., Ragesh Rajan</creatorcontrib><creatorcontrib>C.S., Asha</creatorcontrib><creatorcontrib>Dell’Acqua, Fabio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Remote sensing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh, Shilpa</au><au>M., Ragesh Rajan</au><au>C.S., Asha</au><au>Dell’Acqua, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RDC-UNet++: An end-to-end network for multispectral satellite image enhancement</atitle><jtitle>Remote sensing applications</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><spage>101293</spage><pages>101293-</pages><artnum>101293</artnum><issn>2352-9385</issn><eissn>2352-9385</eissn><abstract>Multi-spectral satellite imagery is an ideal data source for comprehensive, real-time Earth observation (EO) due to its extensive coverage of Earth and regular updates. It has a wide range of applications in environment monitoring, disaster management, urban planning, weather forecasting etc. Yet, the visual aspect of these images and thus the possibility to extract useful information using image processing techniques is often degraded due to fog, rain, dust, cloud, etc. Satellite image enhancement denotes a set of techniques designed to improve the quality of a satellite image such that the result is more useful for image analysis. The image enhancement aims to improve the quality of an image such that the enhanced image is more useful for image analysis than the original image for a particular remote sensing application. This study introduces a multi-spectral satellite image enhancement architecture called Residual Dense Connection-based UNet++ (RDC-UNet++). The unique design can improve multi-spectral images by enhancing their color and texture details. Extensive experimental studies on multi-spectral image datasets containing more than 150 images prove that the proposed architecture performs better than recent state-of-the-art satellite image enhancement algorithms.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.rsase.2024.101293</doi><orcidid>https://orcid.org/0000-0002-9039-1548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-9385
ispartof Remote sensing applications, 2024-11, Vol.36, p.101293, Article 101293
issn 2352-9385
2352-9385
language eng
recordid cdi_crossref_primary_10_1016_j_rsase_2024_101293
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Deep learning
Multi-spectral satellite images
Remote sensing
UNet
title RDC-UNet++: An end-to-end network for multispectral satellite image enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RDC-UNet++:%20An%20end-to-end%20network%20for%20multispectral%20satellite%20image%20enhancement&rft.jtitle=Remote%20sensing%20applications&rft.au=Suresh,%20Shilpa&rft.date=2024-11&rft.volume=36&rft.spage=101293&rft.pages=101293-&rft.artnum=101293&rft.issn=2352-9385&rft.eissn=2352-9385&rft_id=info:doi/10.1016/j.rsase.2024.101293&rft_dat=%3Celsevier_cross%3ES2352938524001575%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c183t-78ab073860511c7f318f5fa9ad5bd96e949c43f5abf0033e255d7513185d355e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true