Loading…
A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid
This paper presents a probabilistic Unit Commitment (UC) model for optimal scheduling of wind power, load forecasts and controllability of vehicles in a microgrid using a stochastic programming framework. The microgrid is made up of microturbines, wind turbine, boiler, Plug-in Electric Vehicles (PEV...
Saved in:
Published in: | Renewable & sustainable energy reviews 2016-12, Vol.66, p.934-947 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a probabilistic Unit Commitment (UC) model for optimal scheduling of wind power, load forecasts and controllability of vehicles in a microgrid using a stochastic programming framework. The microgrid is made up of microturbines, wind turbine, boiler, Plug-in Electric Vehicles (PEVs), thermal storage and battery storage. The proposed model will help the power grid operators with optimal day- ahead planning even with variable operating conditions in respect of load forecasts, controllability of vehicles and wind generation. A set of valid scenarios is assigned for the uncertainties of wind sources, load and PEVs and objective function in the form of expected value. The objective function is to maximize the expected total profit of the UC schedule for the set of scenarios from the viewpoint of microgrid management. The probabilistic unit commitment optimizes the objective function using Particle Swarm Optimization (PSO) algorithm. In order to verify the effectiveness of the stochastic modelling and make a comparison with a simple deterministic one, a typical microgrid is used as a case study. The results can be used to evaluate the effect of integration of PEVs on the economic operation of the microgrid. The results also confirm the necessity to consider the key uncertainties of the microgrid; otherwise the results could overly misrepresent the real world operation of the system. |
---|---|
ISSN: | 1364-0321 1879-0690 |
DOI: | 10.1016/j.rser.2016.08.013 |