Loading…

A review of performance modelling studies associated with open volumetric receiver CSP plant technology

Open volumetric receiver (OVR) concentrating solar power (CSP) plant technology may hold a number of significant advantages over other CSP technologies, as a consequence of its use of air as a heat transfer fluid. Yet the technology faces some key technical challenges that need to be overcome in ord...

Full description

Saved in:
Bibliographic Details
Published in:Renewable & sustainable energy reviews 2018-02, Vol.82, p.3848-3862
Main Authors: Pitot de la Beaujardiere, Jean-Francois P., Reuter, Hanno C.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Open volumetric receiver (OVR) concentrating solar power (CSP) plant technology may hold a number of significant advantages over other CSP technologies, as a consequence of its use of air as a heat transfer fluid. Yet the technology faces some key technical challenges that need to be overcome in order for its potential to be realised. As documented in prior literature reviews, these challenges have attracted substantial research attention in a variety of disciplines. However, literature specifically concerned with the performance modelling of OVR plants and their constituent systems has not been comprehensively reviewed in a standalone body of work. The objective of this study, therefore, is to provide a resource that catalogues modelling studies associated with overall plant performance, as well as the performance of those elements of the technology that are still undergoing technical maturation. Based on the classification and dissemination of these studies, the state of OVR plant technology and the developmental challenges that remain have been reported. In addition, future avenues of research that have yet to be properly addressed in the literature have been identified.
ISSN:1364-0321
1879-0690
DOI:10.1016/j.rser.2017.10.086