Loading…
Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective
Model predictive control (MPC) has shown great potential in improving building performance and saving energy. However, after over 20 years of research, it is yet to be adopted by the industry. The difficulty of obtaining a sufficient control-oriented model is one major factor that hinders the applic...
Saved in:
Published in: | Renewable & sustainable energy reviews 2021-05, Vol.142, p.110835, Article 110835 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Model predictive control (MPC) has shown great potential in improving building performance and saving energy. However, after over 20 years of research, it is yet to be adopted by the industry. The difficulty of obtaining a sufficient control-oriented model is one major factor that hinders the application. In particular, what data is required to build the model and what control performance can be expected with a certain model remain unclear. This study attempts to uncover the underlying reasons and guide future research to tackle the challenges. It starts by clarifying a finer categorization of past studies with respect to both modeling methods and modeling purposes. An extended Level of Detail (LoD) framework is proposed to quantify the data usage in each study. Accordingly, meta-analyses are conducted to compare the data requirements of different modeling categories. The criteria and approaches for model performance evaluation are summarized and classified into validation and verification methods, followed by a discussion about the relationship between the model and control performance. The critical review provides new perspectives on the data requirements and performance evaluation of control-oriented models. Ultimately, the paper concludes with five directions for future research to bridge the gaps between data requirements, model performance, and control performance.
•A critical review to promote the MPC application in buildings.•An extended level of detail approach to quantify data usage in control-oriented model.•Data requirements decided by modeling methods, purposes and building systems.•Model complexity and data availability to be balanced for control-oriented modeling.•Bridging model and control performance is essential for commercial application. |
---|---|
ISSN: | 1364-0321 1879-0690 |
DOI: | 10.1016/j.rser.2021.110835 |