Loading…
Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration
In this study, a wet carbonation method targeting high carbonation rate was developed to prepare aragonite whisker using fine recycled concrete waste (FRCW), aiming to effectively capture CO2 and convert FRCW into high-value products. The effect of operational factors, including MgCl2 concentration,...
Saved in:
Published in: | Renewable & sustainable energy reviews 2023-03, Vol.173, p.113079, Article 113079 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a wet carbonation method targeting high carbonation rate was developed to prepare aragonite whisker using fine recycled concrete waste (FRCW), aiming to effectively capture CO2 and convert FRCW into high-value products. The effect of operational factors, including MgCl2 concentration, temperature, CO2 concentration and duration on the formation of aragonite was systemically investigated. The results indicated this carbonation process can not only produce needle-like aragonite whisker-rich materials but also capture a large amount of CO2 (0.19 g CO2 per g FRCW) within an hour. The MgCl2 concentration and temperature were key parameters governing the nucleation of aragonite, while the formation of needle-like aragonite was favored in a MgCl2-FRCW suspension with a minimum Mg2+/Ca2+ molar ratio >0.16 at a temperature >60 °C. A lower CO2 concentration of |
---|---|
ISSN: | 1364-0321 1879-0690 |
DOI: | 10.1016/j.rser.2022.113079 |