Loading…
Spectroscopic analysis of hot-water- and dilute-acid-extracted hardwood and softwood chips
Hot-water and dilute sulfuric acid pretreatments were performed prior to chemical pulping for silver/white birch (Betula pendula/B. pubescens) and Scots pine (Pinus sylvestris) chips to determine if varying pretreatment conditions on the original wood material were detectable via attenuated total re...
Saved in:
Published in: | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2017-09, Vol.184, p.184-190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hot-water and dilute sulfuric acid pretreatments were performed prior to chemical pulping for silver/white birch (Betula pendula/B. pubescens) and Scots pine (Pinus sylvestris) chips to determine if varying pretreatment conditions on the original wood material were detectable via attenuated total reflectance (ATR) infrared spectroscopy. Pretreatment conditions varied with respect to temperature (130°C and 150°C) and treatment time (from 30min to 120min). The effects of the pretreatments on the composition of wood chips were determined by ATR infrared spectroscopy. The spectral data were compared to those determined by common wood chemistry analyses to evaluate the suitability of ATR spectroscopy method for rapid detection of changes in the wood chemical composition caused by different pretreatment conditions. In addition to determining wood species-dependent differences in the wood chemical composition, analytical results indicated that most essential lignin- and carbohydrates-related phenomena taking place during hot-water and acidic pretreatments could be described by applying this simple spectral method requiring only a small sample amount and sample preparation. Such information included, for example, the cleavage of essential lignin bonds (i.e., mainly β-O-4 linkages in guaiacyl and syringyl lignin) and formation of newly condensed lignin structures under different pretreatment conditions. Carbohydrate analyses indicated significant removal of hemicelluloses (especially hardwood xylan) and hemicelluloses-derived acetyl groups during the pretreatments, but they also confirmed the highly resistant nature of cellulose towards mild pretreatments.
[Display omitted]
•Characterization of hot-water- and dilute acid-extracted wood by ATR spectroscopy.•ATR spectroscopy results were compared to those from wet chemistry analyses.•Changes in the carbohydrate and lignin structure could be determined and explained.•Changes between the pretreatments and wood species could be determined.•The main phenomena of the pretreatments could be explained by ATR results. |
---|---|
ISSN: | 1386-1425 |
DOI: | 10.1016/j.saa.2017.05.010 |