Loading…
Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning
S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS30. The measur...
Saved in:
Published in: | Soils and foundations 2024-12, Vol.64 (6), p.101525, Article 101525 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c183t-a0bb57829163f097f13c36a7c894d6a3e4e8f6be2e0d0b4f7c9c3b1e6697b2e3 |
container_end_page | |
container_issue | 6 |
container_start_page | 101525 |
container_title | Soils and foundations |
container_volume | 64 |
creator | Hayashi, Koichi Suzuki, Toru Inazaki, Tomio Konishi, Chisato Suzuki, Haruhiko Matsuyama, Hisanori |
description | S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS30. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their VS30 are reasonably consistent with true Vs profiles and their VS30. The results implied that the deep learning could estimate Vs profile from H/V together with other information. |
doi_str_mv | 10.1016/j.sandf.2024.101525 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_sandf_2024_101525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038080624001033</els_id><sourcerecordid>S0038080624001033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183t-a0bb57829163f097f13c36a7c894d6a3e4e8f6be2e0d0b4f7c9c3b1e6697b2e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRb0AiVL4Ajb-AZdxnDrJggWqykOqxILuLcceg6s0jmwrqHw9KWHNakYjnau5h5A7DisOXN4fVkn31q0KKMrzZV2sL8gCQNQMapBX5DqlA4AsgPMFcduU_VFn33_Qd_alR6QjdsH4fKJDDM53mKiL4Ug_Q_Tfoc-6YzmwEWP2Rnc0DWhynJY4hYREW53Q0tBTizjQDnXsp-wbcul0l_D2by7J_mm737yw3dvz6-ZxxwyvRWYa2nZd1UXDpXDQVI4LI6SuTN2UVmqBJdZOtlggWGhLV5nGiJajlE3VFiiWRMyxJoaUIjo1xKldPCkO6mxHHdSvHXW2o2Y7E_UwUzh9NnqMKhmPvUHr41RO2eD_5X8APM5zSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning</title><source>DOAJ Directory of Open Access Journals</source><creator>Hayashi, Koichi ; Suzuki, Toru ; Inazaki, Tomio ; Konishi, Chisato ; Suzuki, Haruhiko ; Matsuyama, Hisanori</creator><creatorcontrib>Hayashi, Koichi ; Suzuki, Toru ; Inazaki, Tomio ; Konishi, Chisato ; Suzuki, Haruhiko ; Matsuyama, Hisanori</creatorcontrib><description>S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS30. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their VS30 are reasonably consistent with true Vs profiles and their VS30. The results implied that the deep learning could estimate Vs profile from H/V together with other information.</description><identifier>ISSN: 0038-0806</identifier><identifier>DOI: 10.1016/j.sandf.2024.101525</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Horizontal-to-vertical spectral ratio ; Inversion ; Japan ; Machine learning ; Microtremor ; S-wave velocity ; Surface wave</subject><ispartof>Soils and foundations, 2024-12, Vol.64 (6), p.101525, Article 101525</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c183t-a0bb57829163f097f13c36a7c894d6a3e4e8f6be2e0d0b4f7c9c3b1e6697b2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Hayashi, Koichi</creatorcontrib><creatorcontrib>Suzuki, Toru</creatorcontrib><creatorcontrib>Inazaki, Tomio</creatorcontrib><creatorcontrib>Konishi, Chisato</creatorcontrib><creatorcontrib>Suzuki, Haruhiko</creatorcontrib><creatorcontrib>Matsuyama, Hisanori</creatorcontrib><title>Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning</title><title>Soils and foundations</title><description>S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS30. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their VS30 are reasonably consistent with true Vs profiles and their VS30. The results implied that the deep learning could estimate Vs profile from H/V together with other information.</description><subject>Horizontal-to-vertical spectral ratio</subject><subject>Inversion</subject><subject>Japan</subject><subject>Machine learning</subject><subject>Microtremor</subject><subject>S-wave velocity</subject><subject>Surface wave</subject><issn>0038-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRb0AiVL4Ajb-AZdxnDrJggWqykOqxILuLcceg6s0jmwrqHw9KWHNakYjnau5h5A7DisOXN4fVkn31q0KKMrzZV2sL8gCQNQMapBX5DqlA4AsgPMFcduU_VFn33_Qd_alR6QjdsH4fKJDDM53mKiL4Ug_Q_Tfoc-6YzmwEWP2Rnc0DWhynJY4hYREW53Q0tBTizjQDnXsp-wbcul0l_D2by7J_mm737yw3dvz6-ZxxwyvRWYa2nZd1UXDpXDQVI4LI6SuTN2UVmqBJdZOtlggWGhLV5nGiJajlE3VFiiWRMyxJoaUIjo1xKldPCkO6mxHHdSvHXW2o2Y7E_UwUzh9NnqMKhmPvUHr41RO2eD_5X8APM5zSA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Hayashi, Koichi</creator><creator>Suzuki, Toru</creator><creator>Inazaki, Tomio</creator><creator>Konishi, Chisato</creator><creator>Suzuki, Haruhiko</creator><creator>Matsuyama, Hisanori</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202412</creationdate><title>Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning</title><author>Hayashi, Koichi ; Suzuki, Toru ; Inazaki, Tomio ; Konishi, Chisato ; Suzuki, Haruhiko ; Matsuyama, Hisanori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183t-a0bb57829163f097f13c36a7c894d6a3e4e8f6be2e0d0b4f7c9c3b1e6697b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Horizontal-to-vertical spectral ratio</topic><topic>Inversion</topic><topic>Japan</topic><topic>Machine learning</topic><topic>Microtremor</topic><topic>S-wave velocity</topic><topic>Surface wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Koichi</creatorcontrib><creatorcontrib>Suzuki, Toru</creatorcontrib><creatorcontrib>Inazaki, Tomio</creatorcontrib><creatorcontrib>Konishi, Chisato</creatorcontrib><creatorcontrib>Suzuki, Haruhiko</creatorcontrib><creatorcontrib>Matsuyama, Hisanori</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Soils and foundations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Koichi</au><au>Suzuki, Toru</au><au>Inazaki, Tomio</au><au>Konishi, Chisato</au><au>Suzuki, Haruhiko</au><au>Matsuyama, Hisanori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning</atitle><jtitle>Soils and foundations</jtitle><date>2024-12</date><risdate>2024</risdate><volume>64</volume><issue>6</issue><spage>101525</spage><pages>101525-</pages><artnum>101525</artnum><issn>0038-0806</issn><abstract>S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (VS30) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or VS30. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their VS30 are reasonably consistent with true Vs profiles and their VS30. The results implied that the deep learning could estimate Vs profile from H/V together with other information.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sandf.2024.101525</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0806 |
ispartof | Soils and foundations, 2024-12, Vol.64 (6), p.101525, Article 101525 |
issn | 0038-0806 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_sandf_2024_101525 |
source | DOAJ Directory of Open Access Journals |
subjects | Horizontal-to-vertical spectral ratio Inversion Japan Machine learning Microtremor S-wave velocity Surface wave |
title | Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20S-wave%20velocity%20profiles%20from%20horizontal-to-vertical%20spectral%20ratios%20based%20on%20deep%20learning&rft.jtitle=Soils%20and%20foundations&rft.au=Hayashi,%20Koichi&rft.date=2024-12&rft.volume=64&rft.issue=6&rft.spage=101525&rft.pages=101525-&rft.artnum=101525&rft.issn=0038-0806&rft_id=info:doi/10.1016/j.sandf.2024.101525&rft_dat=%3Celsevier_cross%3ES0038080624001033%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c183t-a0bb57829163f097f13c36a7c894d6a3e4e8f6be2e0d0b4f7c9c3b1e6697b2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |