Loading…
Loss of stat3 function leads to spine malformation and immune disorder in zebrafish
STAT (Signal Transducers and Activators of Transcription) gene family members have been revealed to be involved in cell growth and differentiation in vertebrates. Despite their physiological importance, their functions are poorly studied at organ and systemic levels. In this study, we performed a ge...
Saved in:
Published in: | Science bulletin (Beijing) 2017-02, Vol.62 (3), p.185-196 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | STAT (Signal Transducers and Activators of Transcription) gene family members have been revealed to be involved in cell growth and differentiation in vertebrates. Despite their physiological importance, their functions are poorly studied at organ and systemic levels. In this study, we performed a genome-wide analysis using data from invertebrates to vertebrates to identify STAT genes and analyze their evolutionary history. Interestingly, the STAT gene family undergoes genome duplications during the evolutionary history with STAT3 homologues firstly appearing in the basal extant vertebrate, sea lamprey, suggesting its possible roles in spine formation. To investigate the functions of stat3 in fish species, TALEN technology was performed to generate mutant zebrafish lines, star3 mutant zebrafish showed no obvious defects at early developmental stage but displayed severe lateral and vertical curvature of the spine (scoliosis), spine fracture and the incomplete bone joints with narrower junction between vertebrae at early juvenile stage, as indicated by Alizarin red and Alcian blue staining, radiography and micro-computed tomography (MicroCT) analysis. Transcriptome analysis reveals dramatic alterations in a number of genes involved in immune and infection response, skeletal development and somatic growth, especially downregulated expression of collagen gene family, in the juvenile stat3 mutant zebrafish. Moreover, most of the collagen genes were detected to have abnormal expression pattern during the formation of spine deformities in stat3 mutants. Our data reveal that stat3 is specially expressed in vertebrates and required for normal spine development and immune function in zebrafish. |
---|---|
ISSN: | 2095-9273 |
DOI: | 10.1016/j.scib.2017.01.008 |