Loading…

A vicinal effect for promoting catalysis of Pd1/TiO2: supports of atomically dispersed catalysts play more roles than simply serving as ligands

[Display omitted] Atomically dispersing metal atoms on supports has been emerging as an effective strategy to maximize the atom utilization of metals for catalysis. However, due to the lack of effective tools to characterize the detailed structure of metal-support interface, the chemical functions o...

Full description

Saved in:
Bibliographic Details
Published in:Science bulletin (Beijing) 2018-06, Vol.63 (11), p.675-682
Main Authors: Liu, Pengxin, Zhao, Yun, Qin, Ruixuan, Gu, Lin, Zhang, Peng, Fu, Gang, Zheng, Nanfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Atomically dispersing metal atoms on supports has been emerging as an effective strategy to maximize the atom utilization of metals for catalysis. However, due to the lack of effective tools to characterize the detailed structure of metal-support interface, the chemical functions of supports in atomically dispersed metal catalysts are hardly elucidated at the molecular level. In this work, an atomically dispersed Pd1/TiO2 catalyst with Ti(III) vicinal to Pd is prepared and used to demonstrate the direct involvement of metal atoms on support in the catalysis of dispersed metal atoms. Systematic studies reveal that the Ti(III)-O-Pd interface facilitates the activation of O2 into superoxide (O2−), thus promoting the catalytic oxidation. The catalyst exhibits the highest CO turn-over frequency among ever-reported Pd-based catalysts, and enhanced catalysis in the combustion of harmful volatile organic compound (i.e., toluene) and green-house gas (i.e., methane). The demonstrated direct involvement of metal atoms on oxide support suggests that the real active sites of atomically dispersed metal catalysts can be far beyond isolated metal atoms themselves. Metal atoms on oxide supports in the vicinity serve as another vector to promote the catalysis of atomically dispersed metal catalysts.
ISSN:2095-9273
DOI:10.1016/j.scib.2018.03.002