Loading…

Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation

Contaminated soils are frequently characterized by the simultaneous presence of organic and inorganic contaminants, as well as a poor biological and nutritional status. Rhizoremediation, the combined use of phytoremediation and bioremediation, has been proposed as a Gentle Remediation Option to reha...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2018-03, Vol.618, p.347-356
Main Authors: Lacalle, Rafael G., Gómez-Sagasti, María T., Artetxe, Unai, Garbisu, Carlos, Becerril, José M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Contaminated soils are frequently characterized by the simultaneous presence of organic and inorganic contaminants, as well as a poor biological and nutritional status. Rhizoremediation, the combined use of phytoremediation and bioremediation, has been proposed as a Gentle Remediation Option to rehabilitate multi-contaminated soils. Recently, newer techniques, such as the application of metallic nanoparticles, are being deployed in an attempt to improve traditional remediation options. In order to implement a phytomanagement strategy on calcareous alkaline peri-urban soils simultaneously contaminated with several metals and diesel, we evaluated the effectiveness of Brassica napus L., a profitable crop species, assisted with organic amendment and zero-valent iron nanoparticles (nZVI). A two-month phytotron experiment was carried out using two soils, i.e. amended and unamended with organic matter. Soils were artificially contaminated with Zn, Cu and Cd (1500, 500 and 50mgkg−1, respectively) and diesel (6000mgkg−1). After one month of stabilization, soils were treated with nZVI and/or planted with B. napus. The experiment was conducted with 16 treatments resulting from the combination of the following factors: amended/unamended, contaminated/non-contaminated, planted/unplanted and nZVI/no-nZVI. Soil physicochemical characteristics and biological indicators (plant performance and soil microbial properties) were determined at several time points along the experiment. Carbonate content of soils was the crucial factor for metal immobilization and, concomitantly, reduction of metal toxicity. Organic amendment was essential to promote diesel degradation and to improve the health and biomass of B. napus. Soil microorganisms degraded preferably diesel hydrocarbons of biological origin (biodiesel). Plants had a remarkable positive impact on the activity and functional diversity of soil microbial communities. The nZVI were ineffective as soil remediation tools, but did not cause any toxicity. We concluded that rhizoremediation with B. napus combined with an organic amendment is promising for the phytomanagement of calcareous soils with mixed (metals and diesel) contamination. [Display omitted] •Brassica napus had a key role in the recovery of soil health.•Microorganisms preferably degraded diesel hydrocarbons of biological origin.•The organic amendment was essential for diesel degradation and plant growth.•Soil carbonate content was a crucial factor for metal immobiliz
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.10.334