Loading…

Does the previous exposure to copper alter the pattern of avoidance by zebrafish in a copper gradient scenario? Hypothesis of time-delayed avoidance due to pre-acclimation

The traditional ecotoxicity assays (forced exposure) tend to use organisms that are cultured under controlled conditions or that come from undisturbed ecosystems, with no (or negligible) previous contact with contamination. The same occurs in the non-forced approach, in which organisms are exposed t...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2019-12, Vol.694, p.133703, Article 133703
Main Authors: Araújo, Cristiano V.M., Pontes, João Rodolfo S., Blasco, Julián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The traditional ecotoxicity assays (forced exposure) tend to use organisms that are cultured under controlled conditions or that come from undisturbed ecosystems, with no (or negligible) previous contact with contamination. The same occurs in the non-forced approach, in which organisms are exposed to a contamination gradient and can move between different concentrations choosing the less toxic one. Considering that organisms inhabiting contaminated ecosystems tend to be gradually exposed to contamination, an abrupt exposure from uncontaminated conditions to a contaminated environment might present two problems: lack of ecological relevance to a scenario where the contamination occurs gradually and a magnification of the toxicity due to the sudden change in the environmental conditions. Therefore, a key question should be addressed: might a previous exposure to contamination reduce the organisms' perception of the danger of a contaminant (hypothesis of time-delayed avoidance due to pre-acclimation-TDADP), altering their avoidance response pattern? We tested the avoidance of zebrafish (Danio rerio: ±2 months old) populations when exposed to a copper gradient (0–400 μg/L). The populations differed according to the period (24 h and 7 and 30 days) in which they were acclimated to copper (ca. 400 μg/L). The avoidance in the 2 h experiments changed as a consequence of the acclimation period. In the population that was not previously acclimated, 40% of the fish moved to the less contaminated compartment and only 6.7% stayed in the most contaminated one; for the other populations those values were, respectively, 31 and 11% (24 h-acclimation), 28 and 26% (7 day-acclimation) and 19 and 27% (30 day-acclimation). An abrupt exposure to a contaminant might overestimate the response if this is analyzed in the short-term. When the avoidance tests were prolonged to 24 h, the avoidance tended to reach similar values to those of the non-acclimated population, thus supporting our TDADP hypothesis. [Display omitted] •Zebrafish populations were previously exposed to Cu varying the acclimation time.•After acclimation, fish were tested for avoidance behavior in a Cu gradient scenario.•Previous acclimation caused changes in the avoidance behavior in short term.•The initial preference to Cu of acclimated fish decreased with the exposure time.•The hypothesis of time-delayed avoidance due to pre-acclimation was supported.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.133703