Loading…
Combined effects of polystyrene microplastics and thermal stress on the freshwater mussel Dreissena polymorpha
Human-induced changes in the environment have increased the number of stressors impacting aquatic organism. In the light of climate change and plastic pollution, thermal stress and microplastics (MP) have become two of the most intensively studied stressors in aquatic ecosystems. Previous studies, h...
Saved in:
Published in: | The Science of the total environment 2020-05, Vol.718, p.137253, Article 137253 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human-induced changes in the environment have increased the number of stressors impacting aquatic organism. In the light of climate change and plastic pollution, thermal stress and microplastics (MP) have become two of the most intensively studied stressors in aquatic ecosystems. Previous studies, however, mostly evaluated the impacts of thermal and MP stress in isolation, thereby neglecting joint effects.
To examine the combined effects of both, we exposed the freshwater mussel Dreissena polymorpha to irregular polystyrene MP (6.4, 160, 4000, 100,000 p mL−1) at either 14, 23 or 27 °C for 14 days and analyzed mortality, mussel activity and clearance rate, energy reserves, oxidative stress and the immunological state. Further, we exposed the mussels to diatomite (natural particle equivalent, 100,000 p mL−1) at each of the three water temperatures to compare MP and natural particle toxicity.
An increase in water temperature has a pronounced effect on D. polymorpha and significantly affects the activity, energy reserves, oxidative stress and immune function. In contrast, the effects by MP are limited to a change in the antioxidative capacity without any interactive effects between MP and thermal exposure. The comparison of the MP with a diatomite exposure revealed only limited influence of the particle type on the response of D. polymorpha to high concentrations of suspended particles.
The results indicate that MPs have minor effects on a freshwater mussel compared to thermal stress, neither alone nor as interactive effect. Limited MP toxicity could be based on adaptation mechanism of dreissenids to suspended solids. Nonetheless, MP may contribute to environmental impacts of multiple anthropogenic stressors, especially if their levels increase in the future. Therefore, we suggest integrating MP into the broader context of multiple stressor studies to understand and assess their joint impacts on freshwater ecosystems.
[Display omitted]
•Thermal stress induces stronger effects than microplastics in Dreissena polymorpha.•Thermal stress affects behavior, metabolism and immune function.•Microplastics only affect the antioxidative capacity.•Microplastic and diatomite effects only differ for the antioxidative capacity. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2020.137253 |