Loading…
The mechanism of hcp-bcc phase transformation in Mg single crystal under high pressure
The mechanism of phase transformation from hexagonal close-packed (hcp) to body-centered-cubic (bcc) structure in Mg single crystal under high pressure is studied by molecular dynamics (MD) simulations. The hcp-bcc phase transformation is achieved by a shear-shuffle mechanism, through the formation...
Saved in:
Published in: | Scripta materialia 2023-11, Vol.236, p.115670, Article 115670 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanism of phase transformation from hexagonal close-packed (hcp) to body-centered-cubic (bcc) structure in Mg single crystal under high pressure is studied by molecular dynamics (MD) simulations. The hcp-bcc phase transformation is achieved by a shear-shuffle mechanism, through the formation of bcc nanotwinned structure and the subsequent detwinning. The nanotwinned structure can effectively accommodate the shear caused by the hcp-bcc phase transformation, which facilities the growth of bcc phase under hydrostatic pressure. The detwinning turns the bcc nanotwinned structure into bcc nano-polycrystalline. Two twinning modes with the opposite twinning shear occur during the detwinning, which can accommodate the shear in different directions. The mechanism of hcp-bcc phase transformation revealed in this work brings out a comprehensive understanding of the plastic mechanism under high pressure, which is helpful for the further materials design under high pressure.
[Display omitted] |
---|---|
ISSN: | 1359-6462 1872-8456 |
DOI: | 10.1016/j.scriptamat.2023.115670 |