Loading…

A WRF-UCM-SOLWEIG framework for mapping thermal comfort and quantifying urban climate drivers: Advancing spatial and temporal resolutions at city scale

•Integration of mesoscale climate simulation and urban microclimate model is presente.•City-wide UTCI mapping is achieved at a 10 m spatial resolution and hourly intervals.•Impact of urban climate drivers on outdoor thermal comfort is assessed and quantified. The capability to evaluate city-scale ou...

Full description

Saved in:
Bibliographic Details
Published in:Sustainable cities and society 2024-10, Vol.112, p.105628, Article 105628
Main Authors: Ding, Xiaotian, Zhao, Yongling, Strebel, Dominik, Fan, Yifan, Ge, Jian, Carmeliet, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-80105eb08020bc2e6defe23f4b9f98ecb1d0aff9c3f311a1d93ac0512e65cd213
container_end_page
container_issue
container_start_page 105628
container_title Sustainable cities and society
container_volume 112
creator Ding, Xiaotian
Zhao, Yongling
Strebel, Dominik
Fan, Yifan
Ge, Jian
Carmeliet, Jan
description •Integration of mesoscale climate simulation and urban microclimate model is presente.•City-wide UTCI mapping is achieved at a 10 m spatial resolution and hourly intervals.•Impact of urban climate drivers on outdoor thermal comfort is assessed and quantified. The capability to evaluate city-scale outdoor thermal comfort is crucial for understanding the public's experience of heat stress, especially during heat waves. Nevertheless, there remains a methodological gap in accurately mapping thermal comfort with high spatial and temporal resolutions in complex urban environment and in quantifying the contributions of various urban climate drivers, such as sky view factors and tree canopy fraction. To bridge this gap, we propose an innovative WRF-UCM-SOLWEIG framework that couples a mesoscale model with an urban microclimate model. Specifically, it integrates the Weather Research and Forecasting model coupled with the urban canopy model (WRF-UCM) and the Solar and Longwave Environmental Irradiance Geometry model (SOLWEIG). This framework is then applied to a densely populated tropical city in China, to quantify the impact of urban climate drivers on the Universal Thermal Climate Index (UTCI). The results reveal a significant diurnal variation in the impact of urban morphology. Notably, the most significant drivers affecting daytime UTCI are the impervious surface fraction and the tree canopy fraction, with maximum Pearson's correlation coefficients of 0.80 and -0.70, respectively. These findings suggest that urban heat mitigation strategies should prioritize on reducing impervious surfaces and enhancing shade management, alongside expanding urban forestry measures.
doi_str_mv 10.1016/j.scs.2024.105628
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_scs_2024_105628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2210670724004530</els_id><sourcerecordid>S2210670724004530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-80105eb08020bc2e6defe23f4b9f98ecb1d0aff9c3f311a1d93ac0512e65cd213</originalsourceid><addsrcrecordid>eNp9UF1PwjAUbYwmEuQH-NY_MGw7Npg-EQJIgiFRCY9N195qcVtnWzD8Ev-uXTA-el_u1zkn9x6EbikZUkLzu_3QSz9khI1in-VscoF6jFGS5GOaXf7VZHyNBt7vSYwsp8Uo66HvKd49L5Lt7Cl52ax389USaydq-LLuA2vrcC3a1jRvOLyDq0WFpa3jOGDRKPx5EE0w-tTtD64UDZaVqUUArJw5gvP3eKqOopEdwLcimCjQEQPUrXWxceBtdQjGNh6LgKUJJ-ylqOAGXWlReRj85j7aLuavs8dkvVmuZtN1Ium4CMmExIehJBPCSCkZ5Ao0sFSPykIXE5AlVURoXchUp5QKqopUSJLRiMykYjTtI3rWlc5670Dz1sUX3IlTwjtz-Z5Hc3lnLj-bGzkPZw7Ew44GXEQYaCQo40AGrqz5h_0DuyyE2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A WRF-UCM-SOLWEIG framework for mapping thermal comfort and quantifying urban climate drivers: Advancing spatial and temporal resolutions at city scale</title><source>Elsevier</source><creator>Ding, Xiaotian ; Zhao, Yongling ; Strebel, Dominik ; Fan, Yifan ; Ge, Jian ; Carmeliet, Jan</creator><creatorcontrib>Ding, Xiaotian ; Zhao, Yongling ; Strebel, Dominik ; Fan, Yifan ; Ge, Jian ; Carmeliet, Jan</creatorcontrib><description>•Integration of mesoscale climate simulation and urban microclimate model is presente.•City-wide UTCI mapping is achieved at a 10 m spatial resolution and hourly intervals.•Impact of urban climate drivers on outdoor thermal comfort is assessed and quantified. The capability to evaluate city-scale outdoor thermal comfort is crucial for understanding the public's experience of heat stress, especially during heat waves. Nevertheless, there remains a methodological gap in accurately mapping thermal comfort with high spatial and temporal resolutions in complex urban environment and in quantifying the contributions of various urban climate drivers, such as sky view factors and tree canopy fraction. To bridge this gap, we propose an innovative WRF-UCM-SOLWEIG framework that couples a mesoscale model with an urban microclimate model. Specifically, it integrates the Weather Research and Forecasting model coupled with the urban canopy model (WRF-UCM) and the Solar and Longwave Environmental Irradiance Geometry model (SOLWEIG). This framework is then applied to a densely populated tropical city in China, to quantify the impact of urban climate drivers on the Universal Thermal Climate Index (UTCI). The results reveal a significant diurnal variation in the impact of urban morphology. Notably, the most significant drivers affecting daytime UTCI are the impervious surface fraction and the tree canopy fraction, with maximum Pearson's correlation coefficients of 0.80 and -0.70, respectively. These findings suggest that urban heat mitigation strategies should prioritize on reducing impervious surfaces and enhancing shade management, alongside expanding urban forestry measures.</description><identifier>ISSN: 2210-6707</identifier><identifier>EISSN: 2210-6715</identifier><identifier>DOI: 10.1016/j.scs.2024.105628</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Heat wave ; Outdoor thermal comfort ; Urban climate drivers ; Urban forestry ; Urban morphology ; WRF</subject><ispartof>Sustainable cities and society, 2024-10, Vol.112, p.105628, Article 105628</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-80105eb08020bc2e6defe23f4b9f98ecb1d0aff9c3f311a1d93ac0512e65cd213</cites><orcidid>0000-0002-3529-1798 ; 0000-0001-9555-1179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ding, Xiaotian</creatorcontrib><creatorcontrib>Zhao, Yongling</creatorcontrib><creatorcontrib>Strebel, Dominik</creatorcontrib><creatorcontrib>Fan, Yifan</creatorcontrib><creatorcontrib>Ge, Jian</creatorcontrib><creatorcontrib>Carmeliet, Jan</creatorcontrib><title>A WRF-UCM-SOLWEIG framework for mapping thermal comfort and quantifying urban climate drivers: Advancing spatial and temporal resolutions at city scale</title><title>Sustainable cities and society</title><description>•Integration of mesoscale climate simulation and urban microclimate model is presente.•City-wide UTCI mapping is achieved at a 10 m spatial resolution and hourly intervals.•Impact of urban climate drivers on outdoor thermal comfort is assessed and quantified. The capability to evaluate city-scale outdoor thermal comfort is crucial for understanding the public's experience of heat stress, especially during heat waves. Nevertheless, there remains a methodological gap in accurately mapping thermal comfort with high spatial and temporal resolutions in complex urban environment and in quantifying the contributions of various urban climate drivers, such as sky view factors and tree canopy fraction. To bridge this gap, we propose an innovative WRF-UCM-SOLWEIG framework that couples a mesoscale model with an urban microclimate model. Specifically, it integrates the Weather Research and Forecasting model coupled with the urban canopy model (WRF-UCM) and the Solar and Longwave Environmental Irradiance Geometry model (SOLWEIG). This framework is then applied to a densely populated tropical city in China, to quantify the impact of urban climate drivers on the Universal Thermal Climate Index (UTCI). The results reveal a significant diurnal variation in the impact of urban morphology. Notably, the most significant drivers affecting daytime UTCI are the impervious surface fraction and the tree canopy fraction, with maximum Pearson's correlation coefficients of 0.80 and -0.70, respectively. These findings suggest that urban heat mitigation strategies should prioritize on reducing impervious surfaces and enhancing shade management, alongside expanding urban forestry measures.</description><subject>Heat wave</subject><subject>Outdoor thermal comfort</subject><subject>Urban climate drivers</subject><subject>Urban forestry</subject><subject>Urban morphology</subject><subject>WRF</subject><issn>2210-6707</issn><issn>2210-6715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UF1PwjAUbYwmEuQH-NY_MGw7Npg-EQJIgiFRCY9N195qcVtnWzD8Ev-uXTA-el_u1zkn9x6EbikZUkLzu_3QSz9khI1in-VscoF6jFGS5GOaXf7VZHyNBt7vSYwsp8Uo66HvKd49L5Lt7Cl52ax389USaydq-LLuA2vrcC3a1jRvOLyDq0WFpa3jOGDRKPx5EE0w-tTtD64UDZaVqUUArJw5gvP3eKqOopEdwLcimCjQEQPUrXWxceBtdQjGNh6LgKUJJ-ylqOAGXWlReRj85j7aLuavs8dkvVmuZtN1Ium4CMmExIehJBPCSCkZ5Ao0sFSPykIXE5AlVURoXchUp5QKqopUSJLRiMykYjTtI3rWlc5670Dz1sUX3IlTwjtz-Z5Hc3lnLj-bGzkPZw7Ew44GXEQYaCQo40AGrqz5h_0DuyyE2w</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ding, Xiaotian</creator><creator>Zhao, Yongling</creator><creator>Strebel, Dominik</creator><creator>Fan, Yifan</creator><creator>Ge, Jian</creator><creator>Carmeliet, Jan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3529-1798</orcidid><orcidid>https://orcid.org/0000-0001-9555-1179</orcidid></search><sort><creationdate>20241001</creationdate><title>A WRF-UCM-SOLWEIG framework for mapping thermal comfort and quantifying urban climate drivers: Advancing spatial and temporal resolutions at city scale</title><author>Ding, Xiaotian ; Zhao, Yongling ; Strebel, Dominik ; Fan, Yifan ; Ge, Jian ; Carmeliet, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-80105eb08020bc2e6defe23f4b9f98ecb1d0aff9c3f311a1d93ac0512e65cd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Heat wave</topic><topic>Outdoor thermal comfort</topic><topic>Urban climate drivers</topic><topic>Urban forestry</topic><topic>Urban morphology</topic><topic>WRF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xiaotian</creatorcontrib><creatorcontrib>Zhao, Yongling</creatorcontrib><creatorcontrib>Strebel, Dominik</creatorcontrib><creatorcontrib>Fan, Yifan</creatorcontrib><creatorcontrib>Ge, Jian</creatorcontrib><creatorcontrib>Carmeliet, Jan</creatorcontrib><collection>CrossRef</collection><jtitle>Sustainable cities and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xiaotian</au><au>Zhao, Yongling</au><au>Strebel, Dominik</au><au>Fan, Yifan</au><au>Ge, Jian</au><au>Carmeliet, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A WRF-UCM-SOLWEIG framework for mapping thermal comfort and quantifying urban climate drivers: Advancing spatial and temporal resolutions at city scale</atitle><jtitle>Sustainable cities and society</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>112</volume><spage>105628</spage><pages>105628-</pages><artnum>105628</artnum><issn>2210-6707</issn><eissn>2210-6715</eissn><abstract>•Integration of mesoscale climate simulation and urban microclimate model is presente.•City-wide UTCI mapping is achieved at a 10 m spatial resolution and hourly intervals.•Impact of urban climate drivers on outdoor thermal comfort is assessed and quantified. The capability to evaluate city-scale outdoor thermal comfort is crucial for understanding the public's experience of heat stress, especially during heat waves. Nevertheless, there remains a methodological gap in accurately mapping thermal comfort with high spatial and temporal resolutions in complex urban environment and in quantifying the contributions of various urban climate drivers, such as sky view factors and tree canopy fraction. To bridge this gap, we propose an innovative WRF-UCM-SOLWEIG framework that couples a mesoscale model with an urban microclimate model. Specifically, it integrates the Weather Research and Forecasting model coupled with the urban canopy model (WRF-UCM) and the Solar and Longwave Environmental Irradiance Geometry model (SOLWEIG). This framework is then applied to a densely populated tropical city in China, to quantify the impact of urban climate drivers on the Universal Thermal Climate Index (UTCI). The results reveal a significant diurnal variation in the impact of urban morphology. Notably, the most significant drivers affecting daytime UTCI are the impervious surface fraction and the tree canopy fraction, with maximum Pearson's correlation coefficients of 0.80 and -0.70, respectively. These findings suggest that urban heat mitigation strategies should prioritize on reducing impervious surfaces and enhancing shade management, alongside expanding urban forestry measures.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.scs.2024.105628</doi><orcidid>https://orcid.org/0000-0002-3529-1798</orcidid><orcidid>https://orcid.org/0000-0001-9555-1179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2210-6707
ispartof Sustainable cities and society, 2024-10, Vol.112, p.105628, Article 105628
issn 2210-6707
2210-6715
language eng
recordid cdi_crossref_primary_10_1016_j_scs_2024_105628
source Elsevier
subjects Heat wave
Outdoor thermal comfort
Urban climate drivers
Urban forestry
Urban morphology
WRF
title A WRF-UCM-SOLWEIG framework for mapping thermal comfort and quantifying urban climate drivers: Advancing spatial and temporal resolutions at city scale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20WRF-UCM-SOLWEIG%20framework%20for%20mapping%20thermal%20comfort%20and%20quantifying%20urban%20climate%20drivers:%20Advancing%20spatial%20and%20temporal%20resolutions%20at%20city%20scale&rft.jtitle=Sustainable%20cities%20and%20society&rft.au=Ding,%20Xiaotian&rft.date=2024-10-01&rft.volume=112&rft.spage=105628&rft.pages=105628-&rft.artnum=105628&rft.issn=2210-6707&rft.eissn=2210-6715&rft_id=info:doi/10.1016/j.scs.2024.105628&rft_dat=%3Celsevier_cross%3ES2210670724004530%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-80105eb08020bc2e6defe23f4b9f98ecb1d0aff9c3f311a1d93ac0512e65cd213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true