Loading…

Prussian blue derived Ca-Fe bifunctional materials for chemical looping CO2 capture and in-situ conversion

[Display omitted] •A new chemical looping CO2 capture and in-situ conversion scheme is demonstrated.•Prussian blue derived Ca-Fe bifunctional materials are developed for CL-ICCC.•CO production is achieved during both CO2 capture and conversion half-cycles.•FCZ136 exhibits the best STYCO and CO yield...

Full description

Saved in:
Bibliographic Details
Published in:Separation and purification technology 2023-09, Vol.320, p.123975, Article 123975
Main Authors: Jin, Bo, Ouyang, Tong, Zhang, Zhineng, Zhao, Yunlei, Zhang, Haiyan, Yao, Wenxing, Huang, Guiqiu, Liang, Zhiwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-510c370bdd89369f0f3e68bbb28a901258ac00d37bb1bad09776b1e2898c09e73
cites cdi_FETCH-LOGICAL-c306t-510c370bdd89369f0f3e68bbb28a901258ac00d37bb1bad09776b1e2898c09e73
container_end_page
container_issue
container_start_page 123975
container_title Separation and purification technology
container_volume 320
creator Jin, Bo
Ouyang, Tong
Zhang, Zhineng
Zhao, Yunlei
Zhang, Haiyan
Yao, Wenxing
Huang, Guiqiu
Liang, Zhiwu
description [Display omitted] •A new chemical looping CO2 capture and in-situ conversion scheme is demonstrated.•Prussian blue derived Ca-Fe bifunctional materials are developed for CL-ICCC.•CO production is achieved during both CO2 capture and conversion half-cycles.•FCZ136 exhibits the best STYCO and CO yield with no deactivation during cycles.•ZrO2 and CaZrO3 keeps stability but high iron loading causes sintering for sample. Chemical looping CO2 capture and in-situ reverse water gas shift (CL-ICCC-RWGS) is a promising way to realize integrated CO2 capture and conversion for responding CO2 emission issue. Most bifunctional materials are performed in a reaction configuration of sorbent-catalyst, however, altering the reaction configuration into a sorbent-oxygen-carrying form by introducing a redox couple would result in a new CL-ICCC-RWGS scheme. In this work, a new integrated CO2 capture and conversion scheme is proposed and experimentally demonstrated by synthesizing a series of Prussian blue derived Ca-Fe bifunctional materials with varying iron loadings and exploring their cyclic capture-conversion reactivity. The bifunctional materials with both Ca and Fe species show CO production during isothermal cycles, since CO2 re-oxidation of metallic iron and reverse water gas shift occur in capture and conversion half-cycles, respectively. FCZ136 exhibits the best averaged CO space time yield (238.25 mmolCO∙s−1∙kgFe2O3−1 and 3.00 mmolCO∙s−1∙kgCaO−1) and CO yield (142.95 molCO∙kgFe2O3−1 and 1.80 molCO∙kgCaO−1) with no deactivation after ten isothermal cycles at 650 °C. This is mainly ascribed to two aspects: (i) high iron dispersion improves CO generation rate, (ii) the presence of two inert promoters (t-ZrO2 and CaZrO3) maintains a superior stability. The result provides a new strategy to design efficient bifunctional material and achieve integrated CO2 capture and conversion.
doi_str_mv 10.1016/j.seppur.2023.123975
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_seppur_2023_123975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383586623008833</els_id><sourcerecordid>S1383586623008833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-510c370bdd89369f0f3e68bbb28a901258ac00d37bb1bad09776b1e2898c09e73</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYu8QGsu0ybZCFIcFQbGha5DLqea0klL0g749nYY167O4fx8P4cPoXtKSkpo_dCVGcZxTiUjjJeUcSWqC7SiUvCCC7W5XHYueVHJur5GNzl3hFBBJVuh7j3NOQcTse1nwB5SOILHjSm2gG1o5-imMETT44OZltD0GbdDwu4bDsEt534YxhC_cLNn2JlxmhNgEz0OschhmrEb4hFSXjpu0VW74HD3N9foc_v80bwWu_3LW_O0Kxwn9VRUlDguiPVeKl6rlrQcammtZdIoQlkljSPEc2EttcYTJURtKTCppCMKBF-jzbnXpSHnBK0eUziY9KMp0SdfutNnX_rkS599LdjjGYPlt2OApLMLEB34kMBN2g_h_4JfV3F3SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prussian blue derived Ca-Fe bifunctional materials for chemical looping CO2 capture and in-situ conversion</title><source>ScienceDirect Journals</source><creator>Jin, Bo ; Ouyang, Tong ; Zhang, Zhineng ; Zhao, Yunlei ; Zhang, Haiyan ; Yao, Wenxing ; Huang, Guiqiu ; Liang, Zhiwu</creator><creatorcontrib>Jin, Bo ; Ouyang, Tong ; Zhang, Zhineng ; Zhao, Yunlei ; Zhang, Haiyan ; Yao, Wenxing ; Huang, Guiqiu ; Liang, Zhiwu</creatorcontrib><description>[Display omitted] •A new chemical looping CO2 capture and in-situ conversion scheme is demonstrated.•Prussian blue derived Ca-Fe bifunctional materials are developed for CL-ICCC.•CO production is achieved during both CO2 capture and conversion half-cycles.•FCZ136 exhibits the best STYCO and CO yield with no deactivation during cycles.•ZrO2 and CaZrO3 keeps stability but high iron loading causes sintering for sample. Chemical looping CO2 capture and in-situ reverse water gas shift (CL-ICCC-RWGS) is a promising way to realize integrated CO2 capture and conversion for responding CO2 emission issue. Most bifunctional materials are performed in a reaction configuration of sorbent-catalyst, however, altering the reaction configuration into a sorbent-oxygen-carrying form by introducing a redox couple would result in a new CL-ICCC-RWGS scheme. In this work, a new integrated CO2 capture and conversion scheme is proposed and experimentally demonstrated by synthesizing a series of Prussian blue derived Ca-Fe bifunctional materials with varying iron loadings and exploring their cyclic capture-conversion reactivity. The bifunctional materials with both Ca and Fe species show CO production during isothermal cycles, since CO2 re-oxidation of metallic iron and reverse water gas shift occur in capture and conversion half-cycles, respectively. FCZ136 exhibits the best averaged CO space time yield (238.25 mmolCO∙s−1∙kgFe2O3−1 and 3.00 mmolCO∙s−1∙kgCaO−1) and CO yield (142.95 molCO∙kgFe2O3−1 and 1.80 molCO∙kgCaO−1) with no deactivation after ten isothermal cycles at 650 °C. This is mainly ascribed to two aspects: (i) high iron dispersion improves CO generation rate, (ii) the presence of two inert promoters (t-ZrO2 and CaZrO3) maintains a superior stability. The result provides a new strategy to design efficient bifunctional material and achieve integrated CO2 capture and conversion.</description><identifier>ISSN: 1383-5866</identifier><identifier>EISSN: 1873-3794</identifier><identifier>DOI: 10.1016/j.seppur.2023.123975</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ca-Fe bifunctional material ; Chemical looping ; CO production ; Integrated CO2 capture and conversion ; Prussian blue</subject><ispartof>Separation and purification technology, 2023-09, Vol.320, p.123975, Article 123975</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-510c370bdd89369f0f3e68bbb28a901258ac00d37bb1bad09776b1e2898c09e73</citedby><cites>FETCH-LOGICAL-c306t-510c370bdd89369f0f3e68bbb28a901258ac00d37bb1bad09776b1e2898c09e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Ouyang, Tong</creatorcontrib><creatorcontrib>Zhang, Zhineng</creatorcontrib><creatorcontrib>Zhao, Yunlei</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Yao, Wenxing</creatorcontrib><creatorcontrib>Huang, Guiqiu</creatorcontrib><creatorcontrib>Liang, Zhiwu</creatorcontrib><title>Prussian blue derived Ca-Fe bifunctional materials for chemical looping CO2 capture and in-situ conversion</title><title>Separation and purification technology</title><description>[Display omitted] •A new chemical looping CO2 capture and in-situ conversion scheme is demonstrated.•Prussian blue derived Ca-Fe bifunctional materials are developed for CL-ICCC.•CO production is achieved during both CO2 capture and conversion half-cycles.•FCZ136 exhibits the best STYCO and CO yield with no deactivation during cycles.•ZrO2 and CaZrO3 keeps stability but high iron loading causes sintering for sample. Chemical looping CO2 capture and in-situ reverse water gas shift (CL-ICCC-RWGS) is a promising way to realize integrated CO2 capture and conversion for responding CO2 emission issue. Most bifunctional materials are performed in a reaction configuration of sorbent-catalyst, however, altering the reaction configuration into a sorbent-oxygen-carrying form by introducing a redox couple would result in a new CL-ICCC-RWGS scheme. In this work, a new integrated CO2 capture and conversion scheme is proposed and experimentally demonstrated by synthesizing a series of Prussian blue derived Ca-Fe bifunctional materials with varying iron loadings and exploring their cyclic capture-conversion reactivity. The bifunctional materials with both Ca and Fe species show CO production during isothermal cycles, since CO2 re-oxidation of metallic iron and reverse water gas shift occur in capture and conversion half-cycles, respectively. FCZ136 exhibits the best averaged CO space time yield (238.25 mmolCO∙s−1∙kgFe2O3−1 and 3.00 mmolCO∙s−1∙kgCaO−1) and CO yield (142.95 molCO∙kgFe2O3−1 and 1.80 molCO∙kgCaO−1) with no deactivation after ten isothermal cycles at 650 °C. This is mainly ascribed to two aspects: (i) high iron dispersion improves CO generation rate, (ii) the presence of two inert promoters (t-ZrO2 and CaZrO3) maintains a superior stability. The result provides a new strategy to design efficient bifunctional material and achieve integrated CO2 capture and conversion.</description><subject>Ca-Fe bifunctional material</subject><subject>Chemical looping</subject><subject>CO production</subject><subject>Integrated CO2 capture and conversion</subject><subject>Prussian blue</subject><issn>1383-5866</issn><issn>1873-3794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYu8QGsu0ybZCFIcFQbGha5DLqea0klL0g749nYY167O4fx8P4cPoXtKSkpo_dCVGcZxTiUjjJeUcSWqC7SiUvCCC7W5XHYueVHJur5GNzl3hFBBJVuh7j3NOQcTse1nwB5SOILHjSm2gG1o5-imMETT44OZltD0GbdDwu4bDsEt534YxhC_cLNn2JlxmhNgEz0OschhmrEb4hFSXjpu0VW74HD3N9foc_v80bwWu_3LW_O0Kxwn9VRUlDguiPVeKl6rlrQcammtZdIoQlkljSPEc2EttcYTJURtKTCppCMKBF-jzbnXpSHnBK0eUziY9KMp0SdfutNnX_rkS599LdjjGYPlt2OApLMLEB34kMBN2g_h_4JfV3F3SQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Jin, Bo</creator><creator>Ouyang, Tong</creator><creator>Zhang, Zhineng</creator><creator>Zhao, Yunlei</creator><creator>Zhang, Haiyan</creator><creator>Yao, Wenxing</creator><creator>Huang, Guiqiu</creator><creator>Liang, Zhiwu</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Prussian blue derived Ca-Fe bifunctional materials for chemical looping CO2 capture and in-situ conversion</title><author>Jin, Bo ; Ouyang, Tong ; Zhang, Zhineng ; Zhao, Yunlei ; Zhang, Haiyan ; Yao, Wenxing ; Huang, Guiqiu ; Liang, Zhiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-510c370bdd89369f0f3e68bbb28a901258ac00d37bb1bad09776b1e2898c09e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ca-Fe bifunctional material</topic><topic>Chemical looping</topic><topic>CO production</topic><topic>Integrated CO2 capture and conversion</topic><topic>Prussian blue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Ouyang, Tong</creatorcontrib><creatorcontrib>Zhang, Zhineng</creatorcontrib><creatorcontrib>Zhao, Yunlei</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Yao, Wenxing</creatorcontrib><creatorcontrib>Huang, Guiqiu</creatorcontrib><creatorcontrib>Liang, Zhiwu</creatorcontrib><collection>CrossRef</collection><jtitle>Separation and purification technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Bo</au><au>Ouyang, Tong</au><au>Zhang, Zhineng</au><au>Zhao, Yunlei</au><au>Zhang, Haiyan</au><au>Yao, Wenxing</au><au>Huang, Guiqiu</au><au>Liang, Zhiwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prussian blue derived Ca-Fe bifunctional materials for chemical looping CO2 capture and in-situ conversion</atitle><jtitle>Separation and purification technology</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>320</volume><spage>123975</spage><pages>123975-</pages><artnum>123975</artnum><issn>1383-5866</issn><eissn>1873-3794</eissn><abstract>[Display omitted] •A new chemical looping CO2 capture and in-situ conversion scheme is demonstrated.•Prussian blue derived Ca-Fe bifunctional materials are developed for CL-ICCC.•CO production is achieved during both CO2 capture and conversion half-cycles.•FCZ136 exhibits the best STYCO and CO yield with no deactivation during cycles.•ZrO2 and CaZrO3 keeps stability but high iron loading causes sintering for sample. Chemical looping CO2 capture and in-situ reverse water gas shift (CL-ICCC-RWGS) is a promising way to realize integrated CO2 capture and conversion for responding CO2 emission issue. Most bifunctional materials are performed in a reaction configuration of sorbent-catalyst, however, altering the reaction configuration into a sorbent-oxygen-carrying form by introducing a redox couple would result in a new CL-ICCC-RWGS scheme. In this work, a new integrated CO2 capture and conversion scheme is proposed and experimentally demonstrated by synthesizing a series of Prussian blue derived Ca-Fe bifunctional materials with varying iron loadings and exploring their cyclic capture-conversion reactivity. The bifunctional materials with both Ca and Fe species show CO production during isothermal cycles, since CO2 re-oxidation of metallic iron and reverse water gas shift occur in capture and conversion half-cycles, respectively. FCZ136 exhibits the best averaged CO space time yield (238.25 mmolCO∙s−1∙kgFe2O3−1 and 3.00 mmolCO∙s−1∙kgCaO−1) and CO yield (142.95 molCO∙kgFe2O3−1 and 1.80 molCO∙kgCaO−1) with no deactivation after ten isothermal cycles at 650 °C. This is mainly ascribed to two aspects: (i) high iron dispersion improves CO generation rate, (ii) the presence of two inert promoters (t-ZrO2 and CaZrO3) maintains a superior stability. The result provides a new strategy to design efficient bifunctional material and achieve integrated CO2 capture and conversion.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.seppur.2023.123975</doi></addata></record>
fulltext fulltext
identifier ISSN: 1383-5866
ispartof Separation and purification technology, 2023-09, Vol.320, p.123975, Article 123975
issn 1383-5866
1873-3794
language eng
recordid cdi_crossref_primary_10_1016_j_seppur_2023_123975
source ScienceDirect Journals
subjects Ca-Fe bifunctional material
Chemical looping
CO production
Integrated CO2 capture and conversion
Prussian blue
title Prussian blue derived Ca-Fe bifunctional materials for chemical looping CO2 capture and in-situ conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prussian%20blue%20derived%20Ca-Fe%20bifunctional%20materials%20for%20chemical%20looping%20CO2%20capture%20and%20in-situ%20conversion&rft.jtitle=Separation%20and%20purification%20technology&rft.au=Jin,%20Bo&rft.date=2023-09-01&rft.volume=320&rft.spage=123975&rft.pages=123975-&rft.artnum=123975&rft.issn=1383-5866&rft.eissn=1873-3794&rft_id=info:doi/10.1016/j.seppur.2023.123975&rft_dat=%3Celsevier_cross%3ES1383586623008833%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-510c370bdd89369f0f3e68bbb28a901258ac00d37bb1bad09776b1e2898c09e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true