Loading…

Highly plasticization-resistant Tröger’s base polymer–MOF mixed-matrix membranes for stable gas separation

[Display omitted] •Tröger’s base (TB) polymer was synthesized using an electrophilic aromatic substitution.•Metal-organic framework (MOF) nanoparticles were incorporated into the TB polymer matrix, forming mixed-matrix membranes (MMMs).•TB-MOF MMMs show a significant improvement in H2 and CO2 gas pe...

Full description

Saved in:
Bibliographic Details
Published in:Separation and purification technology 2025-04, Vol.356, p.129854, Article 129854
Main Authors: Lee, Jieun, Jeon, Seungbae, Ji An, Eun, Gwon Kim, Hyung, Hui Jo, Jin, Han, Nara, Park, Sungmin, Seok Chi, Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1004-87f7e49afc08c9095289d7fff6506c93e5b33ac26eb87dc378942d4a124058d43
container_end_page
container_issue
container_start_page 129854
container_title Separation and purification technology
container_volume 356
creator Lee, Jieun
Jeon, Seungbae
Ji An, Eun
Gwon Kim, Hyung
Hui Jo, Jin
Han, Nara
Park, Sungmin
Seok Chi, Won
description [Display omitted] •Tröger’s base (TB) polymer was synthesized using an electrophilic aromatic substitution.•Metal-organic framework (MOF) nanoparticles were incorporated into the TB polymer matrix, forming mixed-matrix membranes (MMMs).•TB-MOF MMMs show a significant improvement in H2 and CO2 gas permeabilities.•TB-MOF MMMs exhibit no plasticization pressure point up to 750 psi.•Hydrogen bonding between Tröger’s base and MOF increases polymer chain rigidity. The plasticization phenomenon, characterized by polymer chain swelling when exposed to highly soluble gas at high feed pressure, has been a major problem for polymer membranes. To address this, we prepared Tröger’s base (TB) polymer-based metal–organic framework (MOF) mixed-matrix membranes (MMMs), which are highly plasticization-resistant membranes. Three different highly porous MOF nanoparticles (ZIF-8, UiO-66-NH2, and MIL-101(Cr)) were prepared in small particle sizes. The corresponding MMMs were formed with a 30 wt% MOF loading to study the effects of MOF species, particle size, chemical functionality, and MOF–polymer interfacial interaction on gas-transport properties and plasticization behavior. The TB polymer-based MOF MMMs exhibited significantly higher H2 and CO2 permeabilities (fourfold to eightfold) than the TB polymer membrane owing to the porous nature and high gas adsorption capacity of the MOF. Additionally, the TB-based MOF MMMs, particularly the UiO-66-NH2 MMM, displayed exceptional CO2 plasticization resistance. This is attributed to the interfacial interaction of the strong hydrogen bonding between the amine group of the TB polymer and the amino group of UiO-66-NH2, as confirmed by small-angle X-ray scattering characterization. This TB polymer-based MOF MMM approach provides a feasible and effective route for enhancing gas-transport properties and CO2 plasticization resistance to achieve energy-efficient and stable gas separation.
doi_str_mv 10.1016/j.seppur.2024.129854
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_seppur_2024_129854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383586624035937</els_id><sourcerecordid>S1383586624035937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1004-87f7e49afc08c9095289d7fff6506c93e5b33ac26eb87dc378942d4a124058d43</originalsourceid><addsrcrecordid>eNp9kD9OwzAUhz2ARCncgMEXSLAdJ3EWJFRRWqmoS5ktx34urvJPdkAtE3dg4iJcgJtwElLCzPSkJ32ffvoQuqIkpoRm17s4QNc9-5gRxmPKCpHyEzShiUiiVGTZGToPYUcIzalgE9Qu3PapOuCuUqF32r2q3rVN5CG40Kumxxv_9bkF__32EXCpAuCurQ718fH-sJ7j2u3BRLXqvdvjGurSqwYCtq3HA19WgLcq4GGS8r_mC3RqVRXg8u9O0eP8bjNbRKv1_XJ2u4o0JYRHIrc58EJZTYQuSJEyUZjcWpulJNNFAmmZJEqzDEqRG53kouDMcEUZJ6kwPJkiPnq1b0PwYGXnXa38QVIij6HkTo6h5DGUHEMN2M2IwbDtxYGXQTtoNBjnQffStO5_wQ8rWnrD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly plasticization-resistant Tröger’s base polymer–MOF mixed-matrix membranes for stable gas separation</title><source>ScienceDirect Journals</source><creator>Lee, Jieun ; Jeon, Seungbae ; Ji An, Eun ; Gwon Kim, Hyung ; Hui Jo, Jin ; Han, Nara ; Park, Sungmin ; Seok Chi, Won</creator><creatorcontrib>Lee, Jieun ; Jeon, Seungbae ; Ji An, Eun ; Gwon Kim, Hyung ; Hui Jo, Jin ; Han, Nara ; Park, Sungmin ; Seok Chi, Won</creatorcontrib><description>[Display omitted] •Tröger’s base (TB) polymer was synthesized using an electrophilic aromatic substitution.•Metal-organic framework (MOF) nanoparticles were incorporated into the TB polymer matrix, forming mixed-matrix membranes (MMMs).•TB-MOF MMMs show a significant improvement in H2 and CO2 gas permeabilities.•TB-MOF MMMs exhibit no plasticization pressure point up to 750 psi.•Hydrogen bonding between Tröger’s base and MOF increases polymer chain rigidity. The plasticization phenomenon, characterized by polymer chain swelling when exposed to highly soluble gas at high feed pressure, has been a major problem for polymer membranes. To address this, we prepared Tröger’s base (TB) polymer-based metal–organic framework (MOF) mixed-matrix membranes (MMMs), which are highly plasticization-resistant membranes. Three different highly porous MOF nanoparticles (ZIF-8, UiO-66-NH2, and MIL-101(Cr)) were prepared in small particle sizes. The corresponding MMMs were formed with a 30 wt% MOF loading to study the effects of MOF species, particle size, chemical functionality, and MOF–polymer interfacial interaction on gas-transport properties and plasticization behavior. The TB polymer-based MOF MMMs exhibited significantly higher H2 and CO2 permeabilities (fourfold to eightfold) than the TB polymer membrane owing to the porous nature and high gas adsorption capacity of the MOF. Additionally, the TB-based MOF MMMs, particularly the UiO-66-NH2 MMM, displayed exceptional CO2 plasticization resistance. This is attributed to the interfacial interaction of the strong hydrogen bonding between the amine group of the TB polymer and the amino group of UiO-66-NH2, as confirmed by small-angle X-ray scattering characterization. This TB polymer-based MOF MMM approach provides a feasible and effective route for enhancing gas-transport properties and CO2 plasticization resistance to achieve energy-efficient and stable gas separation.</description><identifier>ISSN: 1383-5866</identifier><identifier>DOI: 10.1016/j.seppur.2024.129854</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Gas separation ; Metal–organic framework ; Mixed-matrix membrane ; Plasticization ; Tröger’s base polymer</subject><ispartof>Separation and purification technology, 2025-04, Vol.356, p.129854, Article 129854</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1004-87f7e49afc08c9095289d7fff6506c93e5b33ac26eb87dc378942d4a124058d43</cites><orcidid>0000-0003-4507-2959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lee, Jieun</creatorcontrib><creatorcontrib>Jeon, Seungbae</creatorcontrib><creatorcontrib>Ji An, Eun</creatorcontrib><creatorcontrib>Gwon Kim, Hyung</creatorcontrib><creatorcontrib>Hui Jo, Jin</creatorcontrib><creatorcontrib>Han, Nara</creatorcontrib><creatorcontrib>Park, Sungmin</creatorcontrib><creatorcontrib>Seok Chi, Won</creatorcontrib><title>Highly plasticization-resistant Tröger’s base polymer–MOF mixed-matrix membranes for stable gas separation</title><title>Separation and purification technology</title><description>[Display omitted] •Tröger’s base (TB) polymer was synthesized using an electrophilic aromatic substitution.•Metal-organic framework (MOF) nanoparticles were incorporated into the TB polymer matrix, forming mixed-matrix membranes (MMMs).•TB-MOF MMMs show a significant improvement in H2 and CO2 gas permeabilities.•TB-MOF MMMs exhibit no plasticization pressure point up to 750 psi.•Hydrogen bonding between Tröger’s base and MOF increases polymer chain rigidity. The plasticization phenomenon, characterized by polymer chain swelling when exposed to highly soluble gas at high feed pressure, has been a major problem for polymer membranes. To address this, we prepared Tröger’s base (TB) polymer-based metal–organic framework (MOF) mixed-matrix membranes (MMMs), which are highly plasticization-resistant membranes. Three different highly porous MOF nanoparticles (ZIF-8, UiO-66-NH2, and MIL-101(Cr)) were prepared in small particle sizes. The corresponding MMMs were formed with a 30 wt% MOF loading to study the effects of MOF species, particle size, chemical functionality, and MOF–polymer interfacial interaction on gas-transport properties and plasticization behavior. The TB polymer-based MOF MMMs exhibited significantly higher H2 and CO2 permeabilities (fourfold to eightfold) than the TB polymer membrane owing to the porous nature and high gas adsorption capacity of the MOF. Additionally, the TB-based MOF MMMs, particularly the UiO-66-NH2 MMM, displayed exceptional CO2 plasticization resistance. This is attributed to the interfacial interaction of the strong hydrogen bonding between the amine group of the TB polymer and the amino group of UiO-66-NH2, as confirmed by small-angle X-ray scattering characterization. This TB polymer-based MOF MMM approach provides a feasible and effective route for enhancing gas-transport properties and CO2 plasticization resistance to achieve energy-efficient and stable gas separation.</description><subject>Gas separation</subject><subject>Metal–organic framework</subject><subject>Mixed-matrix membrane</subject><subject>Plasticization</subject><subject>Tröger’s base polymer</subject><issn>1383-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kD9OwzAUhz2ARCncgMEXSLAdJ3EWJFRRWqmoS5ktx34urvJPdkAtE3dg4iJcgJtwElLCzPSkJ32ffvoQuqIkpoRm17s4QNc9-5gRxmPKCpHyEzShiUiiVGTZGToPYUcIzalgE9Qu3PapOuCuUqF32r2q3rVN5CG40Kumxxv_9bkF__32EXCpAuCurQ718fH-sJ7j2u3BRLXqvdvjGurSqwYCtq3HA19WgLcq4GGS8r_mC3RqVRXg8u9O0eP8bjNbRKv1_XJ2u4o0JYRHIrc58EJZTYQuSJEyUZjcWpulJNNFAmmZJEqzDEqRG53kouDMcEUZJ6kwPJkiPnq1b0PwYGXnXa38QVIij6HkTo6h5DGUHEMN2M2IwbDtxYGXQTtoNBjnQffStO5_wQ8rWnrD</recordid><startdate>20250401</startdate><enddate>20250401</enddate><creator>Lee, Jieun</creator><creator>Jeon, Seungbae</creator><creator>Ji An, Eun</creator><creator>Gwon Kim, Hyung</creator><creator>Hui Jo, Jin</creator><creator>Han, Nara</creator><creator>Park, Sungmin</creator><creator>Seok Chi, Won</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4507-2959</orcidid></search><sort><creationdate>20250401</creationdate><title>Highly plasticization-resistant Tröger’s base polymer–MOF mixed-matrix membranes for stable gas separation</title><author>Lee, Jieun ; Jeon, Seungbae ; Ji An, Eun ; Gwon Kim, Hyung ; Hui Jo, Jin ; Han, Nara ; Park, Sungmin ; Seok Chi, Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1004-87f7e49afc08c9095289d7fff6506c93e5b33ac26eb87dc378942d4a124058d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Gas separation</topic><topic>Metal–organic framework</topic><topic>Mixed-matrix membrane</topic><topic>Plasticization</topic><topic>Tröger’s base polymer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jieun</creatorcontrib><creatorcontrib>Jeon, Seungbae</creatorcontrib><creatorcontrib>Ji An, Eun</creatorcontrib><creatorcontrib>Gwon Kim, Hyung</creatorcontrib><creatorcontrib>Hui Jo, Jin</creatorcontrib><creatorcontrib>Han, Nara</creatorcontrib><creatorcontrib>Park, Sungmin</creatorcontrib><creatorcontrib>Seok Chi, Won</creatorcontrib><collection>CrossRef</collection><jtitle>Separation and purification technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jieun</au><au>Jeon, Seungbae</au><au>Ji An, Eun</au><au>Gwon Kim, Hyung</au><au>Hui Jo, Jin</au><au>Han, Nara</au><au>Park, Sungmin</au><au>Seok Chi, Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly plasticization-resistant Tröger’s base polymer–MOF mixed-matrix membranes for stable gas separation</atitle><jtitle>Separation and purification technology</jtitle><date>2025-04-01</date><risdate>2025</risdate><volume>356</volume><spage>129854</spage><pages>129854-</pages><artnum>129854</artnum><issn>1383-5866</issn><abstract>[Display omitted] •Tröger’s base (TB) polymer was synthesized using an electrophilic aromatic substitution.•Metal-organic framework (MOF) nanoparticles were incorporated into the TB polymer matrix, forming mixed-matrix membranes (MMMs).•TB-MOF MMMs show a significant improvement in H2 and CO2 gas permeabilities.•TB-MOF MMMs exhibit no plasticization pressure point up to 750 psi.•Hydrogen bonding between Tröger’s base and MOF increases polymer chain rigidity. The plasticization phenomenon, characterized by polymer chain swelling when exposed to highly soluble gas at high feed pressure, has been a major problem for polymer membranes. To address this, we prepared Tröger’s base (TB) polymer-based metal–organic framework (MOF) mixed-matrix membranes (MMMs), which are highly plasticization-resistant membranes. Three different highly porous MOF nanoparticles (ZIF-8, UiO-66-NH2, and MIL-101(Cr)) were prepared in small particle sizes. The corresponding MMMs were formed with a 30 wt% MOF loading to study the effects of MOF species, particle size, chemical functionality, and MOF–polymer interfacial interaction on gas-transport properties and plasticization behavior. The TB polymer-based MOF MMMs exhibited significantly higher H2 and CO2 permeabilities (fourfold to eightfold) than the TB polymer membrane owing to the porous nature and high gas adsorption capacity of the MOF. Additionally, the TB-based MOF MMMs, particularly the UiO-66-NH2 MMM, displayed exceptional CO2 plasticization resistance. This is attributed to the interfacial interaction of the strong hydrogen bonding between the amine group of the TB polymer and the amino group of UiO-66-NH2, as confirmed by small-angle X-ray scattering characterization. This TB polymer-based MOF MMM approach provides a feasible and effective route for enhancing gas-transport properties and CO2 plasticization resistance to achieve energy-efficient and stable gas separation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.seppur.2024.129854</doi><orcidid>https://orcid.org/0000-0003-4507-2959</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1383-5866
ispartof Separation and purification technology, 2025-04, Vol.356, p.129854, Article 129854
issn 1383-5866
language eng
recordid cdi_crossref_primary_10_1016_j_seppur_2024_129854
source ScienceDirect Journals
subjects Gas separation
Metal–organic framework
Mixed-matrix membrane
Plasticization
Tröger’s base polymer
title Highly plasticization-resistant Tröger’s base polymer–MOF mixed-matrix membranes for stable gas separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20plasticization-resistant%20Tr%C3%B6ger%E2%80%99s%20base%20polymer%E2%80%93MOF%20mixed-matrix%20membranes%20for%20stable%20gas%20separation&rft.jtitle=Separation%20and%20purification%20technology&rft.au=Lee,%20Jieun&rft.date=2025-04-01&rft.volume=356&rft.spage=129854&rft.pages=129854-&rft.artnum=129854&rft.issn=1383-5866&rft_id=info:doi/10.1016/j.seppur.2024.129854&rft_dat=%3Celsevier_cross%3ES1383586624035937%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1004-87f7e49afc08c9095289d7fff6506c93e5b33ac26eb87dc378942d4a124058d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true