Loading…
Early fault prediction for wind turbines based on deep learning
•This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 7...
Saved in:
Published in: | Sustainable energy technologies and assessments 2024-04, Vol.64, p.103684, Article 103684 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3 |
container_end_page | |
container_issue | |
container_start_page | 103684 |
container_title | Sustainable energy technologies and assessments |
container_volume | 64 |
creator | Lin, Kuan-Cheng Hsu, Jyh-Yih Wang, Hao-Wei Chen, Mu-Yen |
description | •This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 70%•This research is important for the sustainable energy technologies and assessments.
This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan’s Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan. |
doi_str_mv | 10.1016/j.seta.2024.103684 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_seta_2024_103684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213138824000808</els_id><sourcerecordid>S2213138824000808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3</originalsourceid><addsrcrecordid>eNp9j8tqwzAQRbVooSHND3SlH7A7Iym2DIVSQvqAQDftWsjSqMi4dpCclvx9HdJ1VgN3OJd7GLtDKBGwuu_KTJMtBQg1B7LS6oothEBZoNT6hq1y7gAAZYUKYcEetzb1Rx7soZ_4PpGPborjwMOY-G8cPJ8OqY0DZd7aTJ7PL0-05z3ZNMTh65ZdB9tnWv3fJft83n5sXovd-8vb5mlXOAkwFY3wCtBbAbSGRtYB67Vqa9vUDhTpoBRqH9pae-lF3TrZSNQBQyOcFoq8XDJx7nVpzDlRMPsUv206GgRzMjedOZmbk7k5m8_QwxmiedlPpGSyizS42TKRm4wf4yX8D9jQYyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Early fault prediction for wind turbines based on deep learning</title><source>ScienceDirect Freedom Collection</source><creator>Lin, Kuan-Cheng ; Hsu, Jyh-Yih ; Wang, Hao-Wei ; Chen, Mu-Yen</creator><creatorcontrib>Lin, Kuan-Cheng ; Hsu, Jyh-Yih ; Wang, Hao-Wei ; Chen, Mu-Yen</creatorcontrib><description>•This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 70%•This research is important for the sustainable energy technologies and assessments.
This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan’s Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan.</description><identifier>ISSN: 2213-1388</identifier><identifier>DOI: 10.1016/j.seta.2024.103684</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial intelligence ; Deep learning ; Energy computing ; Sustainability ; Wind turbine predictive maintenance</subject><ispartof>Sustainable energy technologies and assessments, 2024-04, Vol.64, p.103684, Article 103684</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3</citedby><cites>FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3</cites><orcidid>0000-0002-3945-4363 ; 0000-0002-1086-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lin, Kuan-Cheng</creatorcontrib><creatorcontrib>Hsu, Jyh-Yih</creatorcontrib><creatorcontrib>Wang, Hao-Wei</creatorcontrib><creatorcontrib>Chen, Mu-Yen</creatorcontrib><title>Early fault prediction for wind turbines based on deep learning</title><title>Sustainable energy technologies and assessments</title><description>•This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 70%•This research is important for the sustainable energy technologies and assessments.
This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan’s Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan.</description><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Energy computing</subject><subject>Sustainability</subject><subject>Wind turbine predictive maintenance</subject><issn>2213-1388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j8tqwzAQRbVooSHND3SlH7A7Iym2DIVSQvqAQDftWsjSqMi4dpCclvx9HdJ1VgN3OJd7GLtDKBGwuu_KTJMtBQg1B7LS6oothEBZoNT6hq1y7gAAZYUKYcEetzb1Rx7soZ_4PpGPborjwMOY-G8cPJ8OqY0DZd7aTJ7PL0-05z3ZNMTh65ZdB9tnWv3fJft83n5sXovd-8vb5mlXOAkwFY3wCtBbAbSGRtYB67Vqa9vUDhTpoBRqH9pae-lF3TrZSNQBQyOcFoq8XDJx7nVpzDlRMPsUv206GgRzMjedOZmbk7k5m8_QwxmiedlPpGSyizS42TKRm4wf4yX8D9jQYyA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Lin, Kuan-Cheng</creator><creator>Hsu, Jyh-Yih</creator><creator>Wang, Hao-Wei</creator><creator>Chen, Mu-Yen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3945-4363</orcidid><orcidid>https://orcid.org/0000-0002-1086-983X</orcidid></search><sort><creationdate>202404</creationdate><title>Early fault prediction for wind turbines based on deep learning</title><author>Lin, Kuan-Cheng ; Hsu, Jyh-Yih ; Wang, Hao-Wei ; Chen, Mu-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Energy computing</topic><topic>Sustainability</topic><topic>Wind turbine predictive maintenance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Kuan-Cheng</creatorcontrib><creatorcontrib>Hsu, Jyh-Yih</creatorcontrib><creatorcontrib>Wang, Hao-Wei</creatorcontrib><creatorcontrib>Chen, Mu-Yen</creatorcontrib><collection>CrossRef</collection><jtitle>Sustainable energy technologies and assessments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Kuan-Cheng</au><au>Hsu, Jyh-Yih</au><au>Wang, Hao-Wei</au><au>Chen, Mu-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early fault prediction for wind turbines based on deep learning</atitle><jtitle>Sustainable energy technologies and assessments</jtitle><date>2024-04</date><risdate>2024</risdate><volume>64</volume><spage>103684</spage><pages>103684-</pages><artnum>103684</artnum><issn>2213-1388</issn><abstract>•This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 70%•This research is important for the sustainable energy technologies and assessments.
This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan’s Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.seta.2024.103684</doi><orcidid>https://orcid.org/0000-0002-3945-4363</orcidid><orcidid>https://orcid.org/0000-0002-1086-983X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2213-1388 |
ispartof | Sustainable energy technologies and assessments, 2024-04, Vol.64, p.103684, Article 103684 |
issn | 2213-1388 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_seta_2024_103684 |
source | ScienceDirect Freedom Collection |
subjects | Artificial intelligence Deep learning Energy computing Sustainability Wind turbine predictive maintenance |
title | Early fault prediction for wind turbines based on deep learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20fault%20prediction%20for%20wind%20turbines%20based%20on%20deep%20learning&rft.jtitle=Sustainable%20energy%20technologies%20and%20assessments&rft.au=Lin,%20Kuan-Cheng&rft.date=2024-04&rft.volume=64&rft.spage=103684&rft.pages=103684-&rft.artnum=103684&rft.issn=2213-1388&rft_id=info:doi/10.1016/j.seta.2024.103684&rft_dat=%3Celsevier_cross%3ES2213138824000808%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |