Loading…

Early fault prediction for wind turbines based on deep learning

•This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 7...

Full description

Saved in:
Bibliographic Details
Published in:Sustainable energy technologies and assessments 2024-04, Vol.64, p.103684, Article 103684
Main Authors: Lin, Kuan-Cheng, Hsu, Jyh-Yih, Wang, Hao-Wei, Chen, Mu-Yen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3
cites cdi_FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3
container_end_page
container_issue
container_start_page 103684
container_title Sustainable energy technologies and assessments
container_volume 64
creator Lin, Kuan-Cheng
Hsu, Jyh-Yih
Wang, Hao-Wei
Chen, Mu-Yen
description •This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 70%•This research is important for the sustainable energy technologies and assessments. This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan’s Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan.
doi_str_mv 10.1016/j.seta.2024.103684
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_seta_2024_103684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213138824000808</els_id><sourcerecordid>S2213138824000808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3</originalsourceid><addsrcrecordid>eNp9j8tqwzAQRbVooSHND3SlH7A7Iym2DIVSQvqAQDftWsjSqMi4dpCclvx9HdJ1VgN3OJd7GLtDKBGwuu_KTJMtBQg1B7LS6oothEBZoNT6hq1y7gAAZYUKYcEetzb1Rx7soZ_4PpGPborjwMOY-G8cPJ8OqY0DZd7aTJ7PL0-05z3ZNMTh65ZdB9tnWv3fJft83n5sXovd-8vb5mlXOAkwFY3wCtBbAbSGRtYB67Vqa9vUDhTpoBRqH9pae-lF3TrZSNQBQyOcFoq8XDJx7nVpzDlRMPsUv206GgRzMjedOZmbk7k5m8_QwxmiedlPpGSyizS42TKRm4wf4yX8D9jQYyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Early fault prediction for wind turbines based on deep learning</title><source>ScienceDirect Freedom Collection</source><creator>Lin, Kuan-Cheng ; Hsu, Jyh-Yih ; Wang, Hao-Wei ; Chen, Mu-Yen</creator><creatorcontrib>Lin, Kuan-Cheng ; Hsu, Jyh-Yih ; Wang, Hao-Wei ; Chen, Mu-Yen</creatorcontrib><description>•This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 70%•This research is important for the sustainable energy technologies and assessments. This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan’s Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan.</description><identifier>ISSN: 2213-1388</identifier><identifier>DOI: 10.1016/j.seta.2024.103684</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial intelligence ; Deep learning ; Energy computing ; Sustainability ; Wind turbine predictive maintenance</subject><ispartof>Sustainable energy technologies and assessments, 2024-04, Vol.64, p.103684, Article 103684</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3</citedby><cites>FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3</cites><orcidid>0000-0002-3945-4363 ; 0000-0002-1086-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lin, Kuan-Cheng</creatorcontrib><creatorcontrib>Hsu, Jyh-Yih</creatorcontrib><creatorcontrib>Wang, Hao-Wei</creatorcontrib><creatorcontrib>Chen, Mu-Yen</creatorcontrib><title>Early fault prediction for wind turbines based on deep learning</title><title>Sustainable energy technologies and assessments</title><description>•This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 70%•This research is important for the sustainable energy technologies and assessments. This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan’s Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan.</description><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Energy computing</subject><subject>Sustainability</subject><subject>Wind turbine predictive maintenance</subject><issn>2213-1388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j8tqwzAQRbVooSHND3SlH7A7Iym2DIVSQvqAQDftWsjSqMi4dpCclvx9HdJ1VgN3OJd7GLtDKBGwuu_KTJMtBQg1B7LS6oothEBZoNT6hq1y7gAAZYUKYcEetzb1Rx7soZ_4PpGPborjwMOY-G8cPJ8OqY0DZd7aTJ7PL0-05z3ZNMTh65ZdB9tnWv3fJft83n5sXovd-8vb5mlXOAkwFY3wCtBbAbSGRtYB67Vqa9vUDhTpoBRqH9pae-lF3TrZSNQBQyOcFoq8XDJx7nVpzDlRMPsUv206GgRzMjedOZmbk7k5m8_QwxmiedlPpGSyizS42TKRm4wf4yX8D9jQYyA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Lin, Kuan-Cheng</creator><creator>Hsu, Jyh-Yih</creator><creator>Wang, Hao-Wei</creator><creator>Chen, Mu-Yen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3945-4363</orcidid><orcidid>https://orcid.org/0000-0002-1086-983X</orcidid></search><sort><creationdate>202404</creationdate><title>Early fault prediction for wind turbines based on deep learning</title><author>Lin, Kuan-Cheng ; Hsu, Jyh-Yih ; Wang, Hao-Wei ; Chen, Mu-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Energy computing</topic><topic>Sustainability</topic><topic>Wind turbine predictive maintenance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Kuan-Cheng</creatorcontrib><creatorcontrib>Hsu, Jyh-Yih</creatorcontrib><creatorcontrib>Wang, Hao-Wei</creatorcontrib><creatorcontrib>Chen, Mu-Yen</creatorcontrib><collection>CrossRef</collection><jtitle>Sustainable energy technologies and assessments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Kuan-Cheng</au><au>Hsu, Jyh-Yih</au><au>Wang, Hao-Wei</au><au>Chen, Mu-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early fault prediction for wind turbines based on deep learning</atitle><jtitle>Sustainable energy technologies and assessments</jtitle><date>2024-04</date><risdate>2024</risdate><volume>64</volume><spage>103684</spage><pages>103684-</pages><artnum>103684</artnum><issn>2213-1388</issn><abstract>•This research proposes a novel early fault prediction model for wind turbines.•This research adopts random forest method to identify the critical features.•This research presents a novel loss function to handle the data imbalance.•The average prediction accuracy and precision rate achieve 99% and 70%•This research is important for the sustainable energy technologies and assessments. This research focuses on the predictive maintenance of wind turbines, using operational data of 31 wind turbines located in Taiwan’s Changbin Industrial Zone, for a total of five years from 2015 to 2019. A hybrid method fault prediction mechanism for wind turbines is developed using machine learning and deep learning methods. The random forest method is applied to identify features that are highly correlated with faults, and to eliminate low-correlation features to maximize prediction model efficiency. Long short-term memory (LSTM) deep learning methods are then applied to handle the time series data, analyze historical pre-failure information, use the dynamic weight loss function to address data imbalance, and finally predict the future wind turbine health status. The resulting fault prediction model produces average prediction accuracy, precision and recall rates of 99%, 70% and 77%, respectively for predictions of one to six hours ahead, indicating that the proposed model can effectively predict wind turbine failures in advance, thus providing increased time for fault response and effectively improving the wind turbine lifespan.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.seta.2024.103684</doi><orcidid>https://orcid.org/0000-0002-3945-4363</orcidid><orcidid>https://orcid.org/0000-0002-1086-983X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2213-1388
ispartof Sustainable energy technologies and assessments, 2024-04, Vol.64, p.103684, Article 103684
issn 2213-1388
language eng
recordid cdi_crossref_primary_10_1016_j_seta_2024_103684
source ScienceDirect Freedom Collection
subjects Artificial intelligence
Deep learning
Energy computing
Sustainability
Wind turbine predictive maintenance
title Early fault prediction for wind turbines based on deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20fault%20prediction%20for%20wind%20turbines%20based%20on%20deep%20learning&rft.jtitle=Sustainable%20energy%20technologies%20and%20assessments&rft.au=Lin,%20Kuan-Cheng&rft.date=2024-04&rft.volume=64&rft.spage=103684&rft.pages=103684-&rft.artnum=103684&rft.issn=2213-1388&rft_id=info:doi/10.1016/j.seta.2024.103684&rft_dat=%3Celsevier_cross%3ES2213138824000808%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-92d401da20e50937f1754b7a97c04e8f4418dfb78d3d27bc39318f1f92c824ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true