Loading…

GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow

The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus...

Full description

Saved in:
Bibliographic Details
Published in:Software impacts 2023-05, Vol.16, p.100489, Article 100489
Main Authors: Mitrovic, Mile, Kundacina, Ognjen, Lukashevich, Aleksandr, Budennyy, Semen, Vorobev, Petr, Terzija, Vladimir, Maximov, Yury, Deka, Deepjyoti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3
cites cdi_FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3
container_end_page
container_issue
container_start_page 100489
container_title Software impacts
container_volume 16
creator Mitrovic, Mile
Kundacina, Ognjen
Lukashevich, Aleksandr
Budennyy, Semen
Vorobev, Petr
Terzija, Vladimir
Maximov, Yury
Deka, Deepjyoti
description The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus brings a lot of uncertainty to power grid operations. This fact makes the conventional model-based CC-OPF problem non-convex and computationally complex to solve. The developed tool presents a novel data-driven approach based on the GP regression model for solving the CC-OPF problem with a trade-off between complexity and accuracy. The proposed approach and developed software can help system operators to effectively perform ED optimization in the presence of large uncertainties in the power grid. •GP CC-OPF hybrid approach for chance-constrained OPF is proposed.•A sparse Gaussian process model is considered for the trade-off between accuracy and complexity.•The proposed approach does not require information about the topology and parameters of the electrical grid.•GP CC-OPF can help the power system operator to plan generation dispatch under injection uncertainties.
doi_str_mv 10.1016/j.simpa.2023.100489
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_simpa_2023_100489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266596382300026X</els_id><sourcerecordid>S266596382300026X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWLS_wEv-wNbJJhuzggdZbBUK3YMeJUyzCaZsNyVZLfrrTa0HT55mGN4b3vsIuWIwY8Dk9WaW_HaHsxJKni8gVH1CJqWUVVFLrk7_7OdkmtIGAMqKMSbVhLwuWto0xaqd39IFvqfkcaBtDMamRNeYbEfDbvRb_4WjDwMdQ-ipC5E2bzgYWzRhSGNEP2Th6iDEnrZhbyOd92F_Sc4c9slOf-cFeZk_PDePxXK1eGrul4XhQo2FQ1PVCmSJnXK2FgKEUNZY0ckbBx3atUCUQjoEVlZcoDNQA2cMc1vHkV8QfvxrYkgpWqd3MUeJn5qBPkDSG_0DSR8g6SOk7Lo7umyO9uFt1Ml4m1t1Ploz6i74f_3f2UFw_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow</title><source>ScienceDirect®</source><creator>Mitrovic, Mile ; Kundacina, Ognjen ; Lukashevich, Aleksandr ; Budennyy, Semen ; Vorobev, Petr ; Terzija, Vladimir ; Maximov, Yury ; Deka, Deepjyoti</creator><creatorcontrib>Mitrovic, Mile ; Kundacina, Ognjen ; Lukashevich, Aleksandr ; Budennyy, Semen ; Vorobev, Petr ; Terzija, Vladimir ; Maximov, Yury ; Deka, Deepjyoti</creatorcontrib><description>The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus brings a lot of uncertainty to power grid operations. This fact makes the conventional model-based CC-OPF problem non-convex and computationally complex to solve. The developed tool presents a novel data-driven approach based on the GP regression model for solving the CC-OPF problem with a trade-off between complexity and accuracy. The proposed approach and developed software can help system operators to effectively perform ED optimization in the presence of large uncertainties in the power grid. •GP CC-OPF hybrid approach for chance-constrained OPF is proposed.•A sparse Gaussian process model is considered for the trade-off between accuracy and complexity.•The proposed approach does not require information about the topology and parameters of the electrical grid.•GP CC-OPF can help the power system operator to plan generation dispatch under injection uncertainties.</description><identifier>ISSN: 2665-9638</identifier><identifier>EISSN: 2665-9638</identifier><identifier>DOI: 10.1016/j.simpa.2023.100489</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CasADi ; Chance-constrained optimization ; Gaussian Processes ; Machine learning ; Optimal power flow ; Python</subject><ispartof>Software impacts, 2023-05, Vol.16, p.100489, Article 100489</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3</citedby><cites>FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3</cites><orcidid>0000-0001-6691-2772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266596382300026X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Mitrovic, Mile</creatorcontrib><creatorcontrib>Kundacina, Ognjen</creatorcontrib><creatorcontrib>Lukashevich, Aleksandr</creatorcontrib><creatorcontrib>Budennyy, Semen</creatorcontrib><creatorcontrib>Vorobev, Petr</creatorcontrib><creatorcontrib>Terzija, Vladimir</creatorcontrib><creatorcontrib>Maximov, Yury</creatorcontrib><creatorcontrib>Deka, Deepjyoti</creatorcontrib><title>GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow</title><title>Software impacts</title><description>The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus brings a lot of uncertainty to power grid operations. This fact makes the conventional model-based CC-OPF problem non-convex and computationally complex to solve. The developed tool presents a novel data-driven approach based on the GP regression model for solving the CC-OPF problem with a trade-off between complexity and accuracy. The proposed approach and developed software can help system operators to effectively perform ED optimization in the presence of large uncertainties in the power grid. •GP CC-OPF hybrid approach for chance-constrained OPF is proposed.•A sparse Gaussian process model is considered for the trade-off between accuracy and complexity.•The proposed approach does not require information about the topology and parameters of the electrical grid.•GP CC-OPF can help the power system operator to plan generation dispatch under injection uncertainties.</description><subject>CasADi</subject><subject>Chance-constrained optimization</subject><subject>Gaussian Processes</subject><subject>Machine learning</subject><subject>Optimal power flow</subject><subject>Python</subject><issn>2665-9638</issn><issn>2665-9638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWLS_wEv-wNbJJhuzggdZbBUK3YMeJUyzCaZsNyVZLfrrTa0HT55mGN4b3vsIuWIwY8Dk9WaW_HaHsxJKni8gVH1CJqWUVVFLrk7_7OdkmtIGAMqKMSbVhLwuWto0xaqd39IFvqfkcaBtDMamRNeYbEfDbvRb_4WjDwMdQ-ipC5E2bzgYWzRhSGNEP2Th6iDEnrZhbyOd92F_Sc4c9slOf-cFeZk_PDePxXK1eGrul4XhQo2FQ1PVCmSJnXK2FgKEUNZY0ckbBx3atUCUQjoEVlZcoDNQA2cMc1vHkV8QfvxrYkgpWqd3MUeJn5qBPkDSG_0DSR8g6SOk7Lo7umyO9uFt1Ml4m1t1Ploz6i74f_3f2UFw_g</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Mitrovic, Mile</creator><creator>Kundacina, Ognjen</creator><creator>Lukashevich, Aleksandr</creator><creator>Budennyy, Semen</creator><creator>Vorobev, Petr</creator><creator>Terzija, Vladimir</creator><creator>Maximov, Yury</creator><creator>Deka, Deepjyoti</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6691-2772</orcidid></search><sort><creationdate>202305</creationdate><title>GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow</title><author>Mitrovic, Mile ; Kundacina, Ognjen ; Lukashevich, Aleksandr ; Budennyy, Semen ; Vorobev, Petr ; Terzija, Vladimir ; Maximov, Yury ; Deka, Deepjyoti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CasADi</topic><topic>Chance-constrained optimization</topic><topic>Gaussian Processes</topic><topic>Machine learning</topic><topic>Optimal power flow</topic><topic>Python</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitrovic, Mile</creatorcontrib><creatorcontrib>Kundacina, Ognjen</creatorcontrib><creatorcontrib>Lukashevich, Aleksandr</creatorcontrib><creatorcontrib>Budennyy, Semen</creatorcontrib><creatorcontrib>Vorobev, Petr</creatorcontrib><creatorcontrib>Terzija, Vladimir</creatorcontrib><creatorcontrib>Maximov, Yury</creatorcontrib><creatorcontrib>Deka, Deepjyoti</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Software impacts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitrovic, Mile</au><au>Kundacina, Ognjen</au><au>Lukashevich, Aleksandr</au><au>Budennyy, Semen</au><au>Vorobev, Petr</au><au>Terzija, Vladimir</au><au>Maximov, Yury</au><au>Deka, Deepjyoti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow</atitle><jtitle>Software impacts</jtitle><date>2023-05</date><risdate>2023</risdate><volume>16</volume><spage>100489</spage><pages>100489-</pages><artnum>100489</artnum><issn>2665-9638</issn><eissn>2665-9638</eissn><abstract>The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus brings a lot of uncertainty to power grid operations. This fact makes the conventional model-based CC-OPF problem non-convex and computationally complex to solve. The developed tool presents a novel data-driven approach based on the GP regression model for solving the CC-OPF problem with a trade-off between complexity and accuracy. The proposed approach and developed software can help system operators to effectively perform ED optimization in the presence of large uncertainties in the power grid. •GP CC-OPF hybrid approach for chance-constrained OPF is proposed.•A sparse Gaussian process model is considered for the trade-off between accuracy and complexity.•The proposed approach does not require information about the topology and parameters of the electrical grid.•GP CC-OPF can help the power system operator to plan generation dispatch under injection uncertainties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.simpa.2023.100489</doi><orcidid>https://orcid.org/0000-0001-6691-2772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2665-9638
ispartof Software impacts, 2023-05, Vol.16, p.100489, Article 100489
issn 2665-9638
2665-9638
language eng
recordid cdi_crossref_primary_10_1016_j_simpa_2023_100489
source ScienceDirect®
subjects CasADi
Chance-constrained optimization
Gaussian Processes
Machine learning
Optimal power flow
Python
title GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GP%20CC-OPF:%20Gaussian%20Process%20based%20optimization%20tool%20for%20Chance-Constrained%20Optimal%20Power%20Flow&rft.jtitle=Software%20impacts&rft.au=Mitrovic,%20Mile&rft.date=2023-05&rft.volume=16&rft.spage=100489&rft.pages=100489-&rft.artnum=100489&rft.issn=2665-9638&rft.eissn=2665-9638&rft_id=info:doi/10.1016/j.simpa.2023.100489&rft_dat=%3Celsevier_cross%3ES266596382300026X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true