Loading…
GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow
The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus...
Saved in:
Published in: | Software impacts 2023-05, Vol.16, p.100489, Article 100489 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3 |
container_end_page | |
container_issue | |
container_start_page | 100489 |
container_title | Software impacts |
container_volume | 16 |
creator | Mitrovic, Mile Kundacina, Ognjen Lukashevich, Aleksandr Budennyy, Semen Vorobev, Petr Terzija, Vladimir Maximov, Yury Deka, Deepjyoti |
description | The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus brings a lot of uncertainty to power grid operations. This fact makes the conventional model-based CC-OPF problem non-convex and computationally complex to solve. The developed tool presents a novel data-driven approach based on the GP regression model for solving the CC-OPF problem with a trade-off between complexity and accuracy. The proposed approach and developed software can help system operators to effectively perform ED optimization in the presence of large uncertainties in the power grid.
•GP CC-OPF hybrid approach for chance-constrained OPF is proposed.•A sparse Gaussian process model is considered for the trade-off between accuracy and complexity.•The proposed approach does not require information about the topology and parameters of the electrical grid.•GP CC-OPF can help the power system operator to plan generation dispatch under injection uncertainties. |
doi_str_mv | 10.1016/j.simpa.2023.100489 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_simpa_2023_100489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266596382300026X</els_id><sourcerecordid>S266596382300026X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWLS_wEv-wNbJJhuzggdZbBUK3YMeJUyzCaZsNyVZLfrrTa0HT55mGN4b3vsIuWIwY8Dk9WaW_HaHsxJKni8gVH1CJqWUVVFLrk7_7OdkmtIGAMqKMSbVhLwuWto0xaqd39IFvqfkcaBtDMamRNeYbEfDbvRb_4WjDwMdQ-ipC5E2bzgYWzRhSGNEP2Th6iDEnrZhbyOd92F_Sc4c9slOf-cFeZk_PDePxXK1eGrul4XhQo2FQ1PVCmSJnXK2FgKEUNZY0ckbBx3atUCUQjoEVlZcoDNQA2cMc1vHkV8QfvxrYkgpWqd3MUeJn5qBPkDSG_0DSR8g6SOk7Lo7umyO9uFt1Ml4m1t1Ploz6i74f_3f2UFw_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow</title><source>ScienceDirect®</source><creator>Mitrovic, Mile ; Kundacina, Ognjen ; Lukashevich, Aleksandr ; Budennyy, Semen ; Vorobev, Petr ; Terzija, Vladimir ; Maximov, Yury ; Deka, Deepjyoti</creator><creatorcontrib>Mitrovic, Mile ; Kundacina, Ognjen ; Lukashevich, Aleksandr ; Budennyy, Semen ; Vorobev, Petr ; Terzija, Vladimir ; Maximov, Yury ; Deka, Deepjyoti</creatorcontrib><description>The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus brings a lot of uncertainty to power grid operations. This fact makes the conventional model-based CC-OPF problem non-convex and computationally complex to solve. The developed tool presents a novel data-driven approach based on the GP regression model for solving the CC-OPF problem with a trade-off between complexity and accuracy. The proposed approach and developed software can help system operators to effectively perform ED optimization in the presence of large uncertainties in the power grid.
•GP CC-OPF hybrid approach for chance-constrained OPF is proposed.•A sparse Gaussian process model is considered for the trade-off between accuracy and complexity.•The proposed approach does not require information about the topology and parameters of the electrical grid.•GP CC-OPF can help the power system operator to plan generation dispatch under injection uncertainties.</description><identifier>ISSN: 2665-9638</identifier><identifier>EISSN: 2665-9638</identifier><identifier>DOI: 10.1016/j.simpa.2023.100489</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CasADi ; Chance-constrained optimization ; Gaussian Processes ; Machine learning ; Optimal power flow ; Python</subject><ispartof>Software impacts, 2023-05, Vol.16, p.100489, Article 100489</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3</citedby><cites>FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3</cites><orcidid>0000-0001-6691-2772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266596382300026X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Mitrovic, Mile</creatorcontrib><creatorcontrib>Kundacina, Ognjen</creatorcontrib><creatorcontrib>Lukashevich, Aleksandr</creatorcontrib><creatorcontrib>Budennyy, Semen</creatorcontrib><creatorcontrib>Vorobev, Petr</creatorcontrib><creatorcontrib>Terzija, Vladimir</creatorcontrib><creatorcontrib>Maximov, Yury</creatorcontrib><creatorcontrib>Deka, Deepjyoti</creatorcontrib><title>GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow</title><title>Software impacts</title><description>The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus brings a lot of uncertainty to power grid operations. This fact makes the conventional model-based CC-OPF problem non-convex and computationally complex to solve. The developed tool presents a novel data-driven approach based on the GP regression model for solving the CC-OPF problem with a trade-off between complexity and accuracy. The proposed approach and developed software can help system operators to effectively perform ED optimization in the presence of large uncertainties in the power grid.
•GP CC-OPF hybrid approach for chance-constrained OPF is proposed.•A sparse Gaussian process model is considered for the trade-off between accuracy and complexity.•The proposed approach does not require information about the topology and parameters of the electrical grid.•GP CC-OPF can help the power system operator to plan generation dispatch under injection uncertainties.</description><subject>CasADi</subject><subject>Chance-constrained optimization</subject><subject>Gaussian Processes</subject><subject>Machine learning</subject><subject>Optimal power flow</subject><subject>Python</subject><issn>2665-9638</issn><issn>2665-9638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWLS_wEv-wNbJJhuzggdZbBUK3YMeJUyzCaZsNyVZLfrrTa0HT55mGN4b3vsIuWIwY8Dk9WaW_HaHsxJKni8gVH1CJqWUVVFLrk7_7OdkmtIGAMqKMSbVhLwuWto0xaqd39IFvqfkcaBtDMamRNeYbEfDbvRb_4WjDwMdQ-ipC5E2bzgYWzRhSGNEP2Th6iDEnrZhbyOd92F_Sc4c9slOf-cFeZk_PDePxXK1eGrul4XhQo2FQ1PVCmSJnXK2FgKEUNZY0ckbBx3atUCUQjoEVlZcoDNQA2cMc1vHkV8QfvxrYkgpWqd3MUeJn5qBPkDSG_0DSR8g6SOk7Lo7umyO9uFt1Ml4m1t1Ploz6i74f_3f2UFw_g</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Mitrovic, Mile</creator><creator>Kundacina, Ognjen</creator><creator>Lukashevich, Aleksandr</creator><creator>Budennyy, Semen</creator><creator>Vorobev, Petr</creator><creator>Terzija, Vladimir</creator><creator>Maximov, Yury</creator><creator>Deka, Deepjyoti</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6691-2772</orcidid></search><sort><creationdate>202305</creationdate><title>GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow</title><author>Mitrovic, Mile ; Kundacina, Ognjen ; Lukashevich, Aleksandr ; Budennyy, Semen ; Vorobev, Petr ; Terzija, Vladimir ; Maximov, Yury ; Deka, Deepjyoti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CasADi</topic><topic>Chance-constrained optimization</topic><topic>Gaussian Processes</topic><topic>Machine learning</topic><topic>Optimal power flow</topic><topic>Python</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitrovic, Mile</creatorcontrib><creatorcontrib>Kundacina, Ognjen</creatorcontrib><creatorcontrib>Lukashevich, Aleksandr</creatorcontrib><creatorcontrib>Budennyy, Semen</creatorcontrib><creatorcontrib>Vorobev, Petr</creatorcontrib><creatorcontrib>Terzija, Vladimir</creatorcontrib><creatorcontrib>Maximov, Yury</creatorcontrib><creatorcontrib>Deka, Deepjyoti</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Software impacts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitrovic, Mile</au><au>Kundacina, Ognjen</au><au>Lukashevich, Aleksandr</au><au>Budennyy, Semen</au><au>Vorobev, Petr</au><au>Terzija, Vladimir</au><au>Maximov, Yury</au><au>Deka, Deepjyoti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow</atitle><jtitle>Software impacts</jtitle><date>2023-05</date><risdate>2023</risdate><volume>16</volume><spage>100489</spage><pages>100489-</pages><artnum>100489</artnum><issn>2665-9638</issn><eissn>2665-9638</eissn><abstract>The Gaussian Process (GP) based Chance-Constrained Optimal Power Flow (CC-OPF) is an open-source Python code developed for solving economic dispatch (ED) problem in modern power grids. In recent years, integrating a significant amount of renewables into a power grid causes high fluctuations and thus brings a lot of uncertainty to power grid operations. This fact makes the conventional model-based CC-OPF problem non-convex and computationally complex to solve. The developed tool presents a novel data-driven approach based on the GP regression model for solving the CC-OPF problem with a trade-off between complexity and accuracy. The proposed approach and developed software can help system operators to effectively perform ED optimization in the presence of large uncertainties in the power grid.
•GP CC-OPF hybrid approach for chance-constrained OPF is proposed.•A sparse Gaussian process model is considered for the trade-off between accuracy and complexity.•The proposed approach does not require information about the topology and parameters of the electrical grid.•GP CC-OPF can help the power system operator to plan generation dispatch under injection uncertainties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.simpa.2023.100489</doi><orcidid>https://orcid.org/0000-0001-6691-2772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2665-9638 |
ispartof | Software impacts, 2023-05, Vol.16, p.100489, Article 100489 |
issn | 2665-9638 2665-9638 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_simpa_2023_100489 |
source | ScienceDirect® |
subjects | CasADi Chance-constrained optimization Gaussian Processes Machine learning Optimal power flow Python |
title | GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GP%20CC-OPF:%20Gaussian%20Process%20based%20optimization%20tool%20for%20Chance-Constrained%20Optimal%20Power%20Flow&rft.jtitle=Software%20impacts&rft.au=Mitrovic,%20Mile&rft.date=2023-05&rft.volume=16&rft.spage=100489&rft.pages=100489-&rft.artnum=100489&rft.issn=2665-9638&rft.eissn=2665-9638&rft_id=info:doi/10.1016/j.simpa.2023.100489&rft_dat=%3Celsevier_cross%3ES266596382300026X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-fac598062ad8fe9440448ece4d67f0daeb4aa646fa012534afc090311a004f3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |