Loading…

Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings

Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust techniq...

Full description

Saved in:
Bibliographic Details
Published in:Simulation modelling practice and theory 2022-07, Vol.118, p.102550, Article 102550
Main Authors: Manzoor, Awais, Judge, Malik Ali, Ahmed, Fahim, Islam, Saif ul, Buyya, Rajkumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3
cites cdi_FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3
container_end_page
container_issue
container_start_page 102550
container_title Simulation modelling practice and theory
container_volume 118
creator Manzoor, Awais
Judge, Malik Ali
Ahmed, Fahim
Islam, Saif ul
Buyya, Rajkumar
description Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust technique based on demand-side energy management for efficiently monitoring and controlling the domestic loads. A nature-inspired crescive consumer satisfaction algorithm (NCSA) is proposed for the optimal scheduling pattern based on time and device preferences. The proposed algorithm maximizes user satisfaction at the preset user budget by producing optimum appliance scheduling patterns. It considers household appliances input data such as time of use, power ratings, and the absolute maximum satisfaction for optimal scheduling. The proposed algorithm is evaluated on three budget schemes, and the simulation results reveal that the proposed algorithm achieves a better satisfaction index at a lower cost per unit satisfaction. Results also show that the proposed algorithm has a good convergence rate and is generalizable to any random budget scenario.
doi_str_mv 10.1016/j.simpat.2022.102550
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_simpat_2022_102550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569190X22000478</els_id><sourcerecordid>S1569190X22000478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gYu-QMfcpk3TjSCDfzDgZgR3IU1uOxk66ZCkyry9Gera1f3jHM79CLkHugIK_GG_CvZwVHFV0KJIq6Kq6AVZgKhFDiUvLlNf8SaHhn5dk5sQ9pSCELxekN12_FHehCw5TIOK1vVZ3GGmRxeiV9bFvFUBTeZUnDzm1oWj9WkOB-VjFvQOzTScVdZl6ND3p9RFHAbbo4tZO9nBpHO4JVedGgLe_dUl-Xx53q7f8s3H6_v6aZPrgvGYA9MNZ6qhtdYMSipAGEYFQim6rlLUCMGEQAG8Bq6brm4L0KYSjLWiQzBsScrZV_sxBI-dPHqbsp4kUHmmJfdypiXPtORMK8keZxmmbN8WvQzaotNo0rc6SjPa_w1-Adxwd6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings</title><source>ScienceDirect Journals</source><creator>Manzoor, Awais ; Judge, Malik Ali ; Ahmed, Fahim ; Islam, Saif ul ; Buyya, Rajkumar</creator><creatorcontrib>Manzoor, Awais ; Judge, Malik Ali ; Ahmed, Fahim ; Islam, Saif ul ; Buyya, Rajkumar</creatorcontrib><description>Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust technique based on demand-side energy management for efficiently monitoring and controlling the domestic loads. A nature-inspired crescive consumer satisfaction algorithm (NCSA) is proposed for the optimal scheduling pattern based on time and device preferences. The proposed algorithm maximizes user satisfaction at the preset user budget by producing optimum appliance scheduling patterns. It considers household appliances input data such as time of use, power ratings, and the absolute maximum satisfaction for optimal scheduling. The proposed algorithm is evaluated on three budget schemes, and the simulation results reveal that the proposed algorithm achieves a better satisfaction index at a lower cost per unit satisfaction. Results also show that the proposed algorithm has a good convergence rate and is generalizable to any random budget scenario.</description><identifier>ISSN: 1569-190X</identifier><identifier>EISSN: 1878-1462</identifier><identifier>DOI: 10.1016/j.simpat.2022.102550</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Demand response ; Demand side management ; Energy intelligent buildings ; Home energy management ; Nature-inspired scheduling ; Simulation and modelling</subject><ispartof>Simulation modelling practice and theory, 2022-07, Vol.118, p.102550, Article 102550</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3</citedby><cites>FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3</cites><orcidid>0000-0003-3345-9603 ; 0000-0002-7678-8282 ; 0000-0001-9754-6496 ; 0000-0002-9546-4195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Manzoor, Awais</creatorcontrib><creatorcontrib>Judge, Malik Ali</creatorcontrib><creatorcontrib>Ahmed, Fahim</creatorcontrib><creatorcontrib>Islam, Saif ul</creatorcontrib><creatorcontrib>Buyya, Rajkumar</creatorcontrib><title>Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings</title><title>Simulation modelling practice and theory</title><description>Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust technique based on demand-side energy management for efficiently monitoring and controlling the domestic loads. A nature-inspired crescive consumer satisfaction algorithm (NCSA) is proposed for the optimal scheduling pattern based on time and device preferences. The proposed algorithm maximizes user satisfaction at the preset user budget by producing optimum appliance scheduling patterns. It considers household appliances input data such as time of use, power ratings, and the absolute maximum satisfaction for optimal scheduling. The proposed algorithm is evaluated on three budget schemes, and the simulation results reveal that the proposed algorithm achieves a better satisfaction index at a lower cost per unit satisfaction. Results also show that the proposed algorithm has a good convergence rate and is generalizable to any random budget scenario.</description><subject>Demand response</subject><subject>Demand side management</subject><subject>Energy intelligent buildings</subject><subject>Home energy management</subject><subject>Nature-inspired scheduling</subject><subject>Simulation and modelling</subject><issn>1569-190X</issn><issn>1878-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gYu-QMfcpk3TjSCDfzDgZgR3IU1uOxk66ZCkyry9Gera1f3jHM79CLkHugIK_GG_CvZwVHFV0KJIq6Kq6AVZgKhFDiUvLlNf8SaHhn5dk5sQ9pSCELxekN12_FHehCw5TIOK1vVZ3GGmRxeiV9bFvFUBTeZUnDzm1oWj9WkOB-VjFvQOzTScVdZl6ND3p9RFHAbbo4tZO9nBpHO4JVedGgLe_dUl-Xx53q7f8s3H6_v6aZPrgvGYA9MNZ6qhtdYMSipAGEYFQim6rlLUCMGEQAG8Bq6brm4L0KYSjLWiQzBsScrZV_sxBI-dPHqbsp4kUHmmJfdypiXPtORMK8keZxmmbN8WvQzaotNo0rc6SjPa_w1-Adxwd6M</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Manzoor, Awais</creator><creator>Judge, Malik Ali</creator><creator>Ahmed, Fahim</creator><creator>Islam, Saif ul</creator><creator>Buyya, Rajkumar</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3345-9603</orcidid><orcidid>https://orcid.org/0000-0002-7678-8282</orcidid><orcidid>https://orcid.org/0000-0001-9754-6496</orcidid><orcidid>https://orcid.org/0000-0002-9546-4195</orcidid></search><sort><creationdate>202207</creationdate><title>Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings</title><author>Manzoor, Awais ; Judge, Malik Ali ; Ahmed, Fahim ; Islam, Saif ul ; Buyya, Rajkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Demand response</topic><topic>Demand side management</topic><topic>Energy intelligent buildings</topic><topic>Home energy management</topic><topic>Nature-inspired scheduling</topic><topic>Simulation and modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manzoor, Awais</creatorcontrib><creatorcontrib>Judge, Malik Ali</creatorcontrib><creatorcontrib>Ahmed, Fahim</creatorcontrib><creatorcontrib>Islam, Saif ul</creatorcontrib><creatorcontrib>Buyya, Rajkumar</creatorcontrib><collection>CrossRef</collection><jtitle>Simulation modelling practice and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manzoor, Awais</au><au>Judge, Malik Ali</au><au>Ahmed, Fahim</au><au>Islam, Saif ul</au><au>Buyya, Rajkumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings</atitle><jtitle>Simulation modelling practice and theory</jtitle><date>2022-07</date><risdate>2022</risdate><volume>118</volume><spage>102550</spage><pages>102550-</pages><artnum>102550</artnum><issn>1569-190X</issn><eissn>1878-1462</eissn><abstract>Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust technique based on demand-side energy management for efficiently monitoring and controlling the domestic loads. A nature-inspired crescive consumer satisfaction algorithm (NCSA) is proposed for the optimal scheduling pattern based on time and device preferences. The proposed algorithm maximizes user satisfaction at the preset user budget by producing optimum appliance scheduling patterns. It considers household appliances input data such as time of use, power ratings, and the absolute maximum satisfaction for optimal scheduling. The proposed algorithm is evaluated on three budget schemes, and the simulation results reveal that the proposed algorithm achieves a better satisfaction index at a lower cost per unit satisfaction. Results also show that the proposed algorithm has a good convergence rate and is generalizable to any random budget scenario.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.simpat.2022.102550</doi><orcidid>https://orcid.org/0000-0003-3345-9603</orcidid><orcidid>https://orcid.org/0000-0002-7678-8282</orcidid><orcidid>https://orcid.org/0000-0001-9754-6496</orcidid><orcidid>https://orcid.org/0000-0002-9546-4195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-190X
ispartof Simulation modelling practice and theory, 2022-07, Vol.118, p.102550, Article 102550
issn 1569-190X
1878-1462
language eng
recordid cdi_crossref_primary_10_1016_j_simpat_2022_102550
source ScienceDirect Journals
subjects Demand response
Demand side management
Energy intelligent buildings
Home energy management
Nature-inspired scheduling
Simulation and modelling
title Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20simulating%20the%20constraint-based%20nature-inspired%20smart%20scheduling%20in%20energy%20intelligent%20buildings&rft.jtitle=Simulation%20modelling%20practice%20and%20theory&rft.au=Manzoor,%20Awais&rft.date=2022-07&rft.volume=118&rft.spage=102550&rft.pages=102550-&rft.artnum=102550&rft.issn=1569-190X&rft.eissn=1878-1462&rft_id=info:doi/10.1016/j.simpat.2022.102550&rft_dat=%3Celsevier_cross%3ES1569190X22000478%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true