Loading…
Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings
Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust techniq...
Saved in:
Published in: | Simulation modelling practice and theory 2022-07, Vol.118, p.102550, Article 102550 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3 |
container_end_page | |
container_issue | |
container_start_page | 102550 |
container_title | Simulation modelling practice and theory |
container_volume | 118 |
creator | Manzoor, Awais Judge, Malik Ali Ahmed, Fahim Islam, Saif ul Buyya, Rajkumar |
description | Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust technique based on demand-side energy management for efficiently monitoring and controlling the domestic loads. A nature-inspired crescive consumer satisfaction algorithm (NCSA) is proposed for the optimal scheduling pattern based on time and device preferences. The proposed algorithm maximizes user satisfaction at the preset user budget by producing optimum appliance scheduling patterns. It considers household appliances input data such as time of use, power ratings, and the absolute maximum satisfaction for optimal scheduling. The proposed algorithm is evaluated on three budget schemes, and the simulation results reveal that the proposed algorithm achieves a better satisfaction index at a lower cost per unit satisfaction. Results also show that the proposed algorithm has a good convergence rate and is generalizable to any random budget scenario. |
doi_str_mv | 10.1016/j.simpat.2022.102550 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_simpat_2022_102550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569190X22000478</els_id><sourcerecordid>S1569190X22000478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gYu-QMfcpk3TjSCDfzDgZgR3IU1uOxk66ZCkyry9Gera1f3jHM79CLkHugIK_GG_CvZwVHFV0KJIq6Kq6AVZgKhFDiUvLlNf8SaHhn5dk5sQ9pSCELxekN12_FHehCw5TIOK1vVZ3GGmRxeiV9bFvFUBTeZUnDzm1oWj9WkOB-VjFvQOzTScVdZl6ND3p9RFHAbbo4tZO9nBpHO4JVedGgLe_dUl-Xx53q7f8s3H6_v6aZPrgvGYA9MNZ6qhtdYMSipAGEYFQim6rlLUCMGEQAG8Bq6brm4L0KYSjLWiQzBsScrZV_sxBI-dPHqbsp4kUHmmJfdypiXPtORMK8keZxmmbN8WvQzaotNo0rc6SjPa_w1-Adxwd6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings</title><source>ScienceDirect Journals</source><creator>Manzoor, Awais ; Judge, Malik Ali ; Ahmed, Fahim ; Islam, Saif ul ; Buyya, Rajkumar</creator><creatorcontrib>Manzoor, Awais ; Judge, Malik Ali ; Ahmed, Fahim ; Islam, Saif ul ; Buyya, Rajkumar</creatorcontrib><description>Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust technique based on demand-side energy management for efficiently monitoring and controlling the domestic loads. A nature-inspired crescive consumer satisfaction algorithm (NCSA) is proposed for the optimal scheduling pattern based on time and device preferences. The proposed algorithm maximizes user satisfaction at the preset user budget by producing optimum appliance scheduling patterns. It considers household appliances input data such as time of use, power ratings, and the absolute maximum satisfaction for optimal scheduling. The proposed algorithm is evaluated on three budget schemes, and the simulation results reveal that the proposed algorithm achieves a better satisfaction index at a lower cost per unit satisfaction. Results also show that the proposed algorithm has a good convergence rate and is generalizable to any random budget scenario.</description><identifier>ISSN: 1569-190X</identifier><identifier>EISSN: 1878-1462</identifier><identifier>DOI: 10.1016/j.simpat.2022.102550</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Demand response ; Demand side management ; Energy intelligent buildings ; Home energy management ; Nature-inspired scheduling ; Simulation and modelling</subject><ispartof>Simulation modelling practice and theory, 2022-07, Vol.118, p.102550, Article 102550</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3</citedby><cites>FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3</cites><orcidid>0000-0003-3345-9603 ; 0000-0002-7678-8282 ; 0000-0001-9754-6496 ; 0000-0002-9546-4195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Manzoor, Awais</creatorcontrib><creatorcontrib>Judge, Malik Ali</creatorcontrib><creatorcontrib>Ahmed, Fahim</creatorcontrib><creatorcontrib>Islam, Saif ul</creatorcontrib><creatorcontrib>Buyya, Rajkumar</creatorcontrib><title>Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings</title><title>Simulation modelling practice and theory</title><description>Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust technique based on demand-side energy management for efficiently monitoring and controlling the domestic loads. A nature-inspired crescive consumer satisfaction algorithm (NCSA) is proposed for the optimal scheduling pattern based on time and device preferences. The proposed algorithm maximizes user satisfaction at the preset user budget by producing optimum appliance scheduling patterns. It considers household appliances input data such as time of use, power ratings, and the absolute maximum satisfaction for optimal scheduling. The proposed algorithm is evaluated on three budget schemes, and the simulation results reveal that the proposed algorithm achieves a better satisfaction index at a lower cost per unit satisfaction. Results also show that the proposed algorithm has a good convergence rate and is generalizable to any random budget scenario.</description><subject>Demand response</subject><subject>Demand side management</subject><subject>Energy intelligent buildings</subject><subject>Home energy management</subject><subject>Nature-inspired scheduling</subject><subject>Simulation and modelling</subject><issn>1569-190X</issn><issn>1878-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gYu-QMfcpk3TjSCDfzDgZgR3IU1uOxk66ZCkyry9Gera1f3jHM79CLkHugIK_GG_CvZwVHFV0KJIq6Kq6AVZgKhFDiUvLlNf8SaHhn5dk5sQ9pSCELxekN12_FHehCw5TIOK1vVZ3GGmRxeiV9bFvFUBTeZUnDzm1oWj9WkOB-VjFvQOzTScVdZl6ND3p9RFHAbbo4tZO9nBpHO4JVedGgLe_dUl-Xx53q7f8s3H6_v6aZPrgvGYA9MNZ6qhtdYMSipAGEYFQim6rlLUCMGEQAG8Bq6brm4L0KYSjLWiQzBsScrZV_sxBI-dPHqbsp4kUHmmJfdypiXPtORMK8keZxmmbN8WvQzaotNo0rc6SjPa_w1-Adxwd6M</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Manzoor, Awais</creator><creator>Judge, Malik Ali</creator><creator>Ahmed, Fahim</creator><creator>Islam, Saif ul</creator><creator>Buyya, Rajkumar</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3345-9603</orcidid><orcidid>https://orcid.org/0000-0002-7678-8282</orcidid><orcidid>https://orcid.org/0000-0001-9754-6496</orcidid><orcidid>https://orcid.org/0000-0002-9546-4195</orcidid></search><sort><creationdate>202207</creationdate><title>Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings</title><author>Manzoor, Awais ; Judge, Malik Ali ; Ahmed, Fahim ; Islam, Saif ul ; Buyya, Rajkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Demand response</topic><topic>Demand side management</topic><topic>Energy intelligent buildings</topic><topic>Home energy management</topic><topic>Nature-inspired scheduling</topic><topic>Simulation and modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manzoor, Awais</creatorcontrib><creatorcontrib>Judge, Malik Ali</creatorcontrib><creatorcontrib>Ahmed, Fahim</creatorcontrib><creatorcontrib>Islam, Saif ul</creatorcontrib><creatorcontrib>Buyya, Rajkumar</creatorcontrib><collection>CrossRef</collection><jtitle>Simulation modelling practice and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manzoor, Awais</au><au>Judge, Malik Ali</au><au>Ahmed, Fahim</au><au>Islam, Saif ul</au><au>Buyya, Rajkumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings</atitle><jtitle>Simulation modelling practice and theory</jtitle><date>2022-07</date><risdate>2022</risdate><volume>118</volume><spage>102550</spage><pages>102550-</pages><artnum>102550</artnum><issn>1569-190X</issn><eissn>1878-1462</eissn><abstract>Appliance scheduling on the user’s defined preferences plays a pivotal role in smart home energy management systems. In this context, energy management controllers are largely used to satisfy the users’ demand preferences within their financial budget constraints. This work proposes a robust technique based on demand-side energy management for efficiently monitoring and controlling the domestic loads. A nature-inspired crescive consumer satisfaction algorithm (NCSA) is proposed for the optimal scheduling pattern based on time and device preferences. The proposed algorithm maximizes user satisfaction at the preset user budget by producing optimum appliance scheduling patterns. It considers household appliances input data such as time of use, power ratings, and the absolute maximum satisfaction for optimal scheduling. The proposed algorithm is evaluated on three budget schemes, and the simulation results reveal that the proposed algorithm achieves a better satisfaction index at a lower cost per unit satisfaction. Results also show that the proposed algorithm has a good convergence rate and is generalizable to any random budget scenario.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.simpat.2022.102550</doi><orcidid>https://orcid.org/0000-0003-3345-9603</orcidid><orcidid>https://orcid.org/0000-0002-7678-8282</orcidid><orcidid>https://orcid.org/0000-0001-9754-6496</orcidid><orcidid>https://orcid.org/0000-0002-9546-4195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-190X |
ispartof | Simulation modelling practice and theory, 2022-07, Vol.118, p.102550, Article 102550 |
issn | 1569-190X 1878-1462 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_simpat_2022_102550 |
source | ScienceDirect Journals |
subjects | Demand response Demand side management Energy intelligent buildings Home energy management Nature-inspired scheduling Simulation and modelling |
title | Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20simulating%20the%20constraint-based%20nature-inspired%20smart%20scheduling%20in%20energy%20intelligent%20buildings&rft.jtitle=Simulation%20modelling%20practice%20and%20theory&rft.au=Manzoor,%20Awais&rft.date=2022-07&rft.volume=118&rft.spage=102550&rft.pages=102550-&rft.artnum=102550&rft.issn=1569-190X&rft.eissn=1878-1462&rft_id=info:doi/10.1016/j.simpat.2022.102550&rft_dat=%3Celsevier_cross%3ES1569190X22000478%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c236t-13c963a907cc3140818d308e148ff5a0d88388e816716c9f7b21cd5833b8fe1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |