Loading…
Flexible and cost effective CNT coated cotton fabric for CO gas sensing application
In this paper, a low-cost and room temperature flexible carbon monoxide (CO) gas sensor is presented using multi-walled carbon nanotubes coated cotton fabric. A dip and drying method is used to fabricate a lightweight, and high-performance fabric based CO gas sensor using different concentrations of...
Saved in:
Published in: | Sensors and actuators. A. Physical. 2023-11, Vol.362, p.114640, Article 114640 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a low-cost and room temperature flexible carbon monoxide (CO) gas sensor is presented using multi-walled carbon nanotubes coated cotton fabric. A dip and drying method is used to fabricate a lightweight, and high-performance fabric based CO gas sensor using different concentrations of multi-walled carbon nanotubes (MWCNTs). Transmission electron microscopy (TEM) is utilized for examining the deagglomeration of MWCNTs in the presence of a sufficient amount of surfactant. The field-emission scanning electron microscopy (FESEM) is used to evaluate the formation of a uniform network of MWCNTs on the cotton fabric. Fourier transform infrared (FTIR) spectroscopy is used to confirm the presence of functional groups which plays an important role in CO gas sensing. The fabricated cotton fabric coated with MWCNTs (CCM) sensors are tested with different concentrations of CO gas ranging from 25 ppm to 100 ppm at room temperature. It is found that in comparison to all other sensors, the CCM sensor coated with the higher concentration of MWCNTs (0.5 mg/ml) shows a maximum response of 9.11 % at 25 ppm and 15.2 % at 100 ppm concentration of CO gas respectively. The CCM 4 sensor shows the fastest response and recovery within 49s for 25–100 ppm of CO gas. Moreover, the fabricated CCM sensor exhibited good repeatability, reproducibility, and selectivity. These sensors are suitable for low-cost smart textile applications.
[Display omitted]
•Biodegradable cotton fabric-based room temperature CO gas sensors are fabricated.•Flexible cotton fabric sensors are fabricated using CNT with a low-cost process.•The fabricated sensors are highly-sensitive for the detection of CO gas.•The CO gas sensor has a quick response and recovery time at room temperature.•High potential uses in biomedical sensors, intelligent packaging, and e-textile. |
---|---|
ISSN: | 0924-4247 |
DOI: | 10.1016/j.sna.2023.114640 |