Loading…

Effects of the passive voltage divider in a photomultiplier tube: Analytical model, simulations and experimental validation

The effects of the passive resistive voltage divider network in a photomultiplier tube (PMT) have been investigated by developing an in-house Monte Carlo simulation code and compared with experimental measurements and an analytical model. The simulation code follows an iterative procedure that takes...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. 2025-01, Vol.381, p.116057, Article 116057
Main Authors: Martín-Luna, Pablo, Esperante, Daniel, Casaña, José Vicente, Fernández Prieto, Antonio, Fuster-Martínez, Nuria, García Rivas, Iris, Gimeno, Benito, Ginestar, Damián, González-Iglesias, Daniel, Hueso, José Luis, Leptin, Hannah Andrea, Llosá, Gabriela, Martinez-Reviriego, Pablo, Riera, Jaime, Regueiro, Pablo Vázquez, Hueso-González, Fernando
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-df3cdc669fc96baa853a75d66f54299468a757d5b6d31fb4980bcb9a409b15513
container_end_page
container_issue
container_start_page 116057
container_title Sensors and actuators. A. Physical.
container_volume 381
creator Martín-Luna, Pablo
Esperante, Daniel
Casaña, José Vicente
Fernández Prieto, Antonio
Fuster-Martínez, Nuria
García Rivas, Iris
Gimeno, Benito
Ginestar, Damián
González-Iglesias, Daniel
Hueso, José Luis
Leptin, Hannah Andrea
Llosá, Gabriela
Martinez-Reviriego, Pablo
Riera, Jaime
Regueiro, Pablo Vázquez
Hueso-González, Fernando
description The effects of the passive resistive voltage divider network in a photomultiplier tube (PMT) have been investigated by developing an in-house Monte Carlo simulation code and compared with experimental measurements and an analytical model. The simulation code follows an iterative procedure that takes into account the transport and amplification of the electrons within the device depending on the electrostatic fields produced by the electrode voltages. The PMT gain, dynode voltages, rise time and transit time have been studied as a function of the photocathode current and supply voltage. A good agreement between the analytical model, the simulations and numerous experimental measurements using a Hamamatsu R13408-100 PMT has been obtained. The simulation results endorse the use of logistic functions within the analytical model to account for the collection efficiency in the last dynode stages. This works deepens the understanding of passive voltage dividers and develops an advanced behavioral circuit model of photomultiplier tubes. Although validated for a single PMT, the proposed methodology is applicable to any PMT model. This aids in optimizing the design of fully active voltage dividers, to be applied in extremely pulsed applications with high count rates such as prompt gamma-ray imaging during proton therapy. [Display omitted] •We propose an analytical circuit model of a PMT with a passive voltage divider.•Iterative Monte Carlo simulations are used for validation.•We study figures of merit as a function of the photocathode current and voltage bias.•Experimental measurements agreed within 35% in gain and 0.5 ns in timing.•The model is helpful for optimizing the design of fully active voltage dividers.
doi_str_mv 10.1016/j.sna.2024.116057
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_sna_2024_116057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424724010513</els_id><sourcerecordid>S0924424724010513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-df3cdc669fc96baa853a75d66f54299468a757d5b6d31fb4980bcb9a409b15513</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRb0AifL4AHb-ABLsxHFqWFVVeUiV2MDacuwxdeXGUexGVPw8LmXNajQz947uHIRuKSkpofx-W8ZelRWpWEkpJ017hmZEVKxgFWsv0GWMW0JIXbftDH2vrAWdIg4Wpw3gQcXoJsBT8El9AjZucgZG7Hqs8LAJKez2PrnBuzxM-w4e8KJX_pCcVh7vggF_h6PLIpVc6CNWvcHwNcDodtCnrJmUd-Z3eY3OrfIRbv7qFfp4Wr0vX4r12_PrcrEuNG1FKoyttdGcC6sF75SaN7VqG8O5bVglBOPz3Lam6bipqe2YmJNOd0IxIjraNLS-QvR0V48hxhGsHHIaNR4kJfJITG5lJiaPxOSJWPY8njyQg035WRm1g16DcWPmJU1w_7h_AKcveOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of the passive voltage divider in a photomultiplier tube: Analytical model, simulations and experimental validation</title><source>ScienceDirect Freedom Collection</source><creator>Martín-Luna, Pablo ; Esperante, Daniel ; Casaña, José Vicente ; Fernández Prieto, Antonio ; Fuster-Martínez, Nuria ; García Rivas, Iris ; Gimeno, Benito ; Ginestar, Damián ; González-Iglesias, Daniel ; Hueso, José Luis ; Leptin, Hannah Andrea ; Llosá, Gabriela ; Martinez-Reviriego, Pablo ; Riera, Jaime ; Regueiro, Pablo Vázquez ; Hueso-González, Fernando</creator><creatorcontrib>Martín-Luna, Pablo ; Esperante, Daniel ; Casaña, José Vicente ; Fernández Prieto, Antonio ; Fuster-Martínez, Nuria ; García Rivas, Iris ; Gimeno, Benito ; Ginestar, Damián ; González-Iglesias, Daniel ; Hueso, José Luis ; Leptin, Hannah Andrea ; Llosá, Gabriela ; Martinez-Reviriego, Pablo ; Riera, Jaime ; Regueiro, Pablo Vázquez ; Hueso-González, Fernando</creatorcontrib><description>The effects of the passive resistive voltage divider network in a photomultiplier tube (PMT) have been investigated by developing an in-house Monte Carlo simulation code and compared with experimental measurements and an analytical model. The simulation code follows an iterative procedure that takes into account the transport and amplification of the electrons within the device depending on the electrostatic fields produced by the electrode voltages. The PMT gain, dynode voltages, rise time and transit time have been studied as a function of the photocathode current and supply voltage. A good agreement between the analytical model, the simulations and numerous experimental measurements using a Hamamatsu R13408-100 PMT has been obtained. The simulation results endorse the use of logistic functions within the analytical model to account for the collection efficiency in the last dynode stages. This works deepens the understanding of passive voltage dividers and develops an advanced behavioral circuit model of photomultiplier tubes. Although validated for a single PMT, the proposed methodology is applicable to any PMT model. This aids in optimizing the design of fully active voltage dividers, to be applied in extremely pulsed applications with high count rates such as prompt gamma-ray imaging during proton therapy. [Display omitted] •We propose an analytical circuit model of a PMT with a passive voltage divider.•Iterative Monte Carlo simulations are used for validation.•We study figures of merit as a function of the photocathode current and voltage bias.•Experimental measurements agreed within 35% in gain and 0.5 ns in timing.•The model is helpful for optimizing the design of fully active voltage dividers.</description><identifier>ISSN: 0924-4247</identifier><identifier>DOI: 10.1016/j.sna.2024.116057</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Gain drift ; Monte Carlo simulation ; Passive voltage divider network ; Photodetector ; Photomultiplier tube ; Proton therapy</subject><ispartof>Sensors and actuators. A. Physical., 2025-01, Vol.381, p.116057, Article 116057</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-df3cdc669fc96baa853a75d66f54299468a757d5b6d31fb4980bcb9a409b15513</cites><orcidid>0000-0003-3738-5672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Martín-Luna, Pablo</creatorcontrib><creatorcontrib>Esperante, Daniel</creatorcontrib><creatorcontrib>Casaña, José Vicente</creatorcontrib><creatorcontrib>Fernández Prieto, Antonio</creatorcontrib><creatorcontrib>Fuster-Martínez, Nuria</creatorcontrib><creatorcontrib>García Rivas, Iris</creatorcontrib><creatorcontrib>Gimeno, Benito</creatorcontrib><creatorcontrib>Ginestar, Damián</creatorcontrib><creatorcontrib>González-Iglesias, Daniel</creatorcontrib><creatorcontrib>Hueso, José Luis</creatorcontrib><creatorcontrib>Leptin, Hannah Andrea</creatorcontrib><creatorcontrib>Llosá, Gabriela</creatorcontrib><creatorcontrib>Martinez-Reviriego, Pablo</creatorcontrib><creatorcontrib>Riera, Jaime</creatorcontrib><creatorcontrib>Regueiro, Pablo Vázquez</creatorcontrib><creatorcontrib>Hueso-González, Fernando</creatorcontrib><title>Effects of the passive voltage divider in a photomultiplier tube: Analytical model, simulations and experimental validation</title><title>Sensors and actuators. A. Physical.</title><description>The effects of the passive resistive voltage divider network in a photomultiplier tube (PMT) have been investigated by developing an in-house Monte Carlo simulation code and compared with experimental measurements and an analytical model. The simulation code follows an iterative procedure that takes into account the transport and amplification of the electrons within the device depending on the electrostatic fields produced by the electrode voltages. The PMT gain, dynode voltages, rise time and transit time have been studied as a function of the photocathode current and supply voltage. A good agreement between the analytical model, the simulations and numerous experimental measurements using a Hamamatsu R13408-100 PMT has been obtained. The simulation results endorse the use of logistic functions within the analytical model to account for the collection efficiency in the last dynode stages. This works deepens the understanding of passive voltage dividers and develops an advanced behavioral circuit model of photomultiplier tubes. Although validated for a single PMT, the proposed methodology is applicable to any PMT model. This aids in optimizing the design of fully active voltage dividers, to be applied in extremely pulsed applications with high count rates such as prompt gamma-ray imaging during proton therapy. [Display omitted] •We propose an analytical circuit model of a PMT with a passive voltage divider.•Iterative Monte Carlo simulations are used for validation.•We study figures of merit as a function of the photocathode current and voltage bias.•Experimental measurements agreed within 35% in gain and 0.5 ns in timing.•The model is helpful for optimizing the design of fully active voltage dividers.</description><subject>Gain drift</subject><subject>Monte Carlo simulation</subject><subject>Passive voltage divider network</subject><subject>Photodetector</subject><subject>Photomultiplier tube</subject><subject>Proton therapy</subject><issn>0924-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRb0AifL4AHb-ABLsxHFqWFVVeUiV2MDacuwxdeXGUexGVPw8LmXNajQz947uHIRuKSkpofx-W8ZelRWpWEkpJ017hmZEVKxgFWsv0GWMW0JIXbftDH2vrAWdIg4Wpw3gQcXoJsBT8El9AjZucgZG7Hqs8LAJKez2PrnBuzxM-w4e8KJX_pCcVh7vggF_h6PLIpVc6CNWvcHwNcDodtCnrJmUd-Z3eY3OrfIRbv7qFfp4Wr0vX4r12_PrcrEuNG1FKoyttdGcC6sF75SaN7VqG8O5bVglBOPz3Lam6bipqe2YmJNOd0IxIjraNLS-QvR0V48hxhGsHHIaNR4kJfJITG5lJiaPxOSJWPY8njyQg035WRm1g16DcWPmJU1w_7h_AKcveOo</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Martín-Luna, Pablo</creator><creator>Esperante, Daniel</creator><creator>Casaña, José Vicente</creator><creator>Fernández Prieto, Antonio</creator><creator>Fuster-Martínez, Nuria</creator><creator>García Rivas, Iris</creator><creator>Gimeno, Benito</creator><creator>Ginestar, Damián</creator><creator>González-Iglesias, Daniel</creator><creator>Hueso, José Luis</creator><creator>Leptin, Hannah Andrea</creator><creator>Llosá, Gabriela</creator><creator>Martinez-Reviriego, Pablo</creator><creator>Riera, Jaime</creator><creator>Regueiro, Pablo Vázquez</creator><creator>Hueso-González, Fernando</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3738-5672</orcidid></search><sort><creationdate>20250101</creationdate><title>Effects of the passive voltage divider in a photomultiplier tube: Analytical model, simulations and experimental validation</title><author>Martín-Luna, Pablo ; Esperante, Daniel ; Casaña, José Vicente ; Fernández Prieto, Antonio ; Fuster-Martínez, Nuria ; García Rivas, Iris ; Gimeno, Benito ; Ginestar, Damián ; González-Iglesias, Daniel ; Hueso, José Luis ; Leptin, Hannah Andrea ; Llosá, Gabriela ; Martinez-Reviriego, Pablo ; Riera, Jaime ; Regueiro, Pablo Vázquez ; Hueso-González, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-df3cdc669fc96baa853a75d66f54299468a757d5b6d31fb4980bcb9a409b15513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Gain drift</topic><topic>Monte Carlo simulation</topic><topic>Passive voltage divider network</topic><topic>Photodetector</topic><topic>Photomultiplier tube</topic><topic>Proton therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Luna, Pablo</creatorcontrib><creatorcontrib>Esperante, Daniel</creatorcontrib><creatorcontrib>Casaña, José Vicente</creatorcontrib><creatorcontrib>Fernández Prieto, Antonio</creatorcontrib><creatorcontrib>Fuster-Martínez, Nuria</creatorcontrib><creatorcontrib>García Rivas, Iris</creatorcontrib><creatorcontrib>Gimeno, Benito</creatorcontrib><creatorcontrib>Ginestar, Damián</creatorcontrib><creatorcontrib>González-Iglesias, Daniel</creatorcontrib><creatorcontrib>Hueso, José Luis</creatorcontrib><creatorcontrib>Leptin, Hannah Andrea</creatorcontrib><creatorcontrib>Llosá, Gabriela</creatorcontrib><creatorcontrib>Martinez-Reviriego, Pablo</creatorcontrib><creatorcontrib>Riera, Jaime</creatorcontrib><creatorcontrib>Regueiro, Pablo Vázquez</creatorcontrib><creatorcontrib>Hueso-González, Fernando</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Luna, Pablo</au><au>Esperante, Daniel</au><au>Casaña, José Vicente</au><au>Fernández Prieto, Antonio</au><au>Fuster-Martínez, Nuria</au><au>García Rivas, Iris</au><au>Gimeno, Benito</au><au>Ginestar, Damián</au><au>González-Iglesias, Daniel</au><au>Hueso, José Luis</au><au>Leptin, Hannah Andrea</au><au>Llosá, Gabriela</au><au>Martinez-Reviriego, Pablo</au><au>Riera, Jaime</au><au>Regueiro, Pablo Vázquez</au><au>Hueso-González, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of the passive voltage divider in a photomultiplier tube: Analytical model, simulations and experimental validation</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>381</volume><spage>116057</spage><pages>116057-</pages><artnum>116057</artnum><issn>0924-4247</issn><abstract>The effects of the passive resistive voltage divider network in a photomultiplier tube (PMT) have been investigated by developing an in-house Monte Carlo simulation code and compared with experimental measurements and an analytical model. The simulation code follows an iterative procedure that takes into account the transport and amplification of the electrons within the device depending on the electrostatic fields produced by the electrode voltages. The PMT gain, dynode voltages, rise time and transit time have been studied as a function of the photocathode current and supply voltage. A good agreement between the analytical model, the simulations and numerous experimental measurements using a Hamamatsu R13408-100 PMT has been obtained. The simulation results endorse the use of logistic functions within the analytical model to account for the collection efficiency in the last dynode stages. This works deepens the understanding of passive voltage dividers and develops an advanced behavioral circuit model of photomultiplier tubes. Although validated for a single PMT, the proposed methodology is applicable to any PMT model. This aids in optimizing the design of fully active voltage dividers, to be applied in extremely pulsed applications with high count rates such as prompt gamma-ray imaging during proton therapy. [Display omitted] •We propose an analytical circuit model of a PMT with a passive voltage divider.•Iterative Monte Carlo simulations are used for validation.•We study figures of merit as a function of the photocathode current and voltage bias.•Experimental measurements agreed within 35% in gain and 0.5 ns in timing.•The model is helpful for optimizing the design of fully active voltage dividers.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2024.116057</doi><orcidid>https://orcid.org/0000-0003-3738-5672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2025-01, Vol.381, p.116057, Article 116057
issn 0924-4247
language eng
recordid cdi_crossref_primary_10_1016_j_sna_2024_116057
source ScienceDirect Freedom Collection
subjects Gain drift
Monte Carlo simulation
Passive voltage divider network
Photodetector
Photomultiplier tube
Proton therapy
title Effects of the passive voltage divider in a photomultiplier tube: Analytical model, simulations and experimental validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20the%20passive%20voltage%20divider%20in%20a%20photomultiplier%20tube:%20Analytical%20model,%20simulations%20and%20experimental%20validation&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Mart%C3%ADn-Luna,%20Pablo&rft.date=2025-01-01&rft.volume=381&rft.spage=116057&rft.pages=116057-&rft.artnum=116057&rft.issn=0924-4247&rft_id=info:doi/10.1016/j.sna.2024.116057&rft_dat=%3Celsevier_cross%3ES0924424724010513%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-df3cdc669fc96baa853a75d66f54299468a757d5b6d31fb4980bcb9a409b15513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true