Loading…
Cysteine-tagged chimeric avidin forms high binding capacity layers directly on gold
Cysteine-tagged, genetically engineered avidin named ChiAvd-Cys and wild-type avidin form monolayers or bilayer structures when immobilised directly on gold. Non-specific binding can be reduced by a post-treatment of the avidin layers with a N-[tris(hydroxymethyl)methyl]-acrylamide (pTHMMAA) polymer...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2012-08, Vol.171-172, p.440-448 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cysteine-tagged, genetically engineered avidin named ChiAvd-Cys and wild-type avidin form monolayers or bilayer structures when immobilised directly on gold. Non-specific binding can be reduced by a post-treatment of the avidin layers with a N-[tris(hydroxymethyl)methyl]-acrylamide (pTHMMAA) polymer. ChiAvd-Cys showed excellent activity when immobilised on gold. About 70% of the ChiAvd-Cys molecules were able to bind two biotinylated green fluorescent proteins (per avidin tetramer). Amino-biotinylated antibody F(ab′)2 fragments could be bound to every 4th and 8th ChiAvd-Cys and wild-type avidin molecule, respectively, whereas on average one thiol-biotinylated antibody Fab′-fragment was bound to every ChiAvd-Cys. Antigen binding to the thiol-biotinylated Fab′-fragment bound to the ChiAvd-Cys/pTHMMAA layer was almost twice compared to that of the amino-biotinylated F(ab′)2-fragments. The high antigen binding was due to a site-directed orientation of the thiol-biotinylated fragments. The ChiAvd-Cys/pTHMMAA layers offer high capacity that may be used to couple biotinylated compounds on biosensor surfaces. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2012.05.008 |