Loading…

Oxygen vacancies mediated α-MoO3 Nano-ribbons by Cu doping for highly sensitive, selective and rapid detection of hazardous NO2 for gas sensor application

The demand for less toxic, less expensive, and low operating temperature-based sensors to enhance detection of NO2 leaks is driven by the growing concern over the hazardous impacts in many sectors. The superiority of layered structures and its better carrier transport is more desirable in gas sensor...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2023-08, Vol.389, p.133810, Article 133810
Main Authors: Aysha Parveen, R., Vinoth, E., Harish, S., Hara, K., Archana, J., Ponnusamy, S., Navaneethan, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-ceac8d031af4cb75474ccdcd57d001656a975844d8c1d4868162f88d9f7fce0d3
cites cdi_FETCH-LOGICAL-c297t-ceac8d031af4cb75474ccdcd57d001656a975844d8c1d4868162f88d9f7fce0d3
container_end_page
container_issue
container_start_page 133810
container_title Sensors and actuators. B, Chemical
container_volume 389
creator Aysha Parveen, R.
Vinoth, E.
Harish, S.
Hara, K.
Archana, J.
Ponnusamy, S.
Navaneethan, M.
description The demand for less toxic, less expensive, and low operating temperature-based sensors to enhance detection of NO2 leaks is driven by the growing concern over the hazardous impacts in many sectors. The superiority of layered structures and its better carrier transport is more desirable in gas sensors. The α-MoO3 is a rapidly developing hotspot material in the field of gas sensing due to its distinctive layered structure, accessibility, and environmental friendliness. Herein, α-MoO3 nano-ribbons (NRs) with increased carrier transport through oxygen vacancies (Vo) was achieved by Cu-doping. Interestingly, Vo and carrier concentration (n) enhanced in Cu-doped α-MoO3 NRs. Due to synergistic enhancements in mobility (μH ∼ 1.85 cm−2V−1s−1), diffusion coefficient (Dn ∼ 7.05 m2s−1) and n ∼ 6.07 × 1019, the Cu-doped (4 at%) α-MoO3 NRs selectively displayed an ultra-high response of 715% for 10 ppm of NO2 at an operating temperature of 170 ℃. Further, it showed high response (161%) for 10 ppm at 110 ℃. The ensuing low limit of detection (LOD) (∼18 ppb), repeatability (4 cycles), high selectivity among H2S, SO2, & NH3, and stability over 100 days revealed excellent activity for NO2 detection. This work offers promising strategy for the fabrication of MoO3 NRs that are adaptable for NO2 sensing. [Display omitted] •Here, used a simplified Cu doping strategy to lower the operating temperature of the sensor.•The enhancement in the sensing performance due to oxygen vacancies (Vo) enrichment, carrier concentration, and charge transport caused by Cu in the lattice of α-MoO3.•Low limit of detection (LOD) (∼18 ppb), good repeatability for 4 cycles for NO2 demonstrates its outstanding performance.•Response of 715% and long-term stability (100 days) added its outstanding sensor candidates.
doi_str_mv 10.1016/j.snb.2023.133810
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_snb_2023_133810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400523005257</els_id><sourcerecordid>S0925400523005257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-ceac8d031af4cb75474ccdcd57d001656a975844d8c1d4868162f88d9f7fce0d3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHY-AAl2nMSuWKGKP6k0G1hbju2krlI7stOKchVOwUU4E07LmtU8jeY9zfsAuMYoxQiXt-s02DrNUEZSTAjD6ARMMKMkIYjSUzBBs6xIcoSKc3ARwhohlJMSTcBX9bFvtYU7IYWVRge40cqIQSv48528uorApbAu8aaunQ2w3sP5FirXG9vCxnm4Mu2q28OgbTCD2embKDstRwmFVdCL3iio9DDunIWugSvxKbxy2wCXVXYIaUU4JEQp-r4zUoy3l-CsEV3QV39zCt4fH97mz8mienqZ3y8Smc3okEgtJFOIYNHksqZFTnMplVQFVSiiKUoxowXLc8UkVjkrGS6zhjE1a2gjNVJkCvAxV3oXgtcN773ZCL_nGPGRLl_zSJePdPmRbvTcHT06PrYz2vMQ6VkZ4fnYlCtn_nH_AijChg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxygen vacancies mediated α-MoO3 Nano-ribbons by Cu doping for highly sensitive, selective and rapid detection of hazardous NO2 for gas sensor application</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Aysha Parveen, R. ; Vinoth, E. ; Harish, S. ; Hara, K. ; Archana, J. ; Ponnusamy, S. ; Navaneethan, M.</creator><creatorcontrib>Aysha Parveen, R. ; Vinoth, E. ; Harish, S. ; Hara, K. ; Archana, J. ; Ponnusamy, S. ; Navaneethan, M.</creatorcontrib><description>The demand for less toxic, less expensive, and low operating temperature-based sensors to enhance detection of NO2 leaks is driven by the growing concern over the hazardous impacts in many sectors. The superiority of layered structures and its better carrier transport is more desirable in gas sensors. The α-MoO3 is a rapidly developing hotspot material in the field of gas sensing due to its distinctive layered structure, accessibility, and environmental friendliness. Herein, α-MoO3 nano-ribbons (NRs) with increased carrier transport through oxygen vacancies (Vo) was achieved by Cu-doping. Interestingly, Vo and carrier concentration (n) enhanced in Cu-doped α-MoO3 NRs. Due to synergistic enhancements in mobility (μH ∼ 1.85 cm−2V−1s−1), diffusion coefficient (Dn ∼ 7.05 m2s−1) and n ∼ 6.07 × 1019, the Cu-doped (4 at%) α-MoO3 NRs selectively displayed an ultra-high response of 715% for 10 ppm of NO2 at an operating temperature of 170 ℃. Further, it showed high response (161%) for 10 ppm at 110 ℃. The ensuing low limit of detection (LOD) (∼18 ppb), repeatability (4 cycles), high selectivity among H2S, SO2, &amp; NH3, and stability over 100 days revealed excellent activity for NO2 detection. This work offers promising strategy for the fabrication of MoO3 NRs that are adaptable for NO2 sensing. [Display omitted] •Here, used a simplified Cu doping strategy to lower the operating temperature of the sensor.•The enhancement in the sensing performance due to oxygen vacancies (Vo) enrichment, carrier concentration, and charge transport caused by Cu in the lattice of α-MoO3.•Low limit of detection (LOD) (∼18 ppb), good repeatability for 4 cycles for NO2 demonstrates its outstanding performance.•Response of 715% and long-term stability (100 days) added its outstanding sensor candidates.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2023.133810</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cu-α-MoO3 ; Limit of detection ; Low temperature ; Nano-ribbons ; NO2 ; Stability</subject><ispartof>Sensors and actuators. B, Chemical, 2023-08, Vol.389, p.133810, Article 133810</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-ceac8d031af4cb75474ccdcd57d001656a975844d8c1d4868162f88d9f7fce0d3</citedby><cites>FETCH-LOGICAL-c297t-ceac8d031af4cb75474ccdcd57d001656a975844d8c1d4868162f88d9f7fce0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aysha Parveen, R.</creatorcontrib><creatorcontrib>Vinoth, E.</creatorcontrib><creatorcontrib>Harish, S.</creatorcontrib><creatorcontrib>Hara, K.</creatorcontrib><creatorcontrib>Archana, J.</creatorcontrib><creatorcontrib>Ponnusamy, S.</creatorcontrib><creatorcontrib>Navaneethan, M.</creatorcontrib><title>Oxygen vacancies mediated α-MoO3 Nano-ribbons by Cu doping for highly sensitive, selective and rapid detection of hazardous NO2 for gas sensor application</title><title>Sensors and actuators. B, Chemical</title><description>The demand for less toxic, less expensive, and low operating temperature-based sensors to enhance detection of NO2 leaks is driven by the growing concern over the hazardous impacts in many sectors. The superiority of layered structures and its better carrier transport is more desirable in gas sensors. The α-MoO3 is a rapidly developing hotspot material in the field of gas sensing due to its distinctive layered structure, accessibility, and environmental friendliness. Herein, α-MoO3 nano-ribbons (NRs) with increased carrier transport through oxygen vacancies (Vo) was achieved by Cu-doping. Interestingly, Vo and carrier concentration (n) enhanced in Cu-doped α-MoO3 NRs. Due to synergistic enhancements in mobility (μH ∼ 1.85 cm−2V−1s−1), diffusion coefficient (Dn ∼ 7.05 m2s−1) and n ∼ 6.07 × 1019, the Cu-doped (4 at%) α-MoO3 NRs selectively displayed an ultra-high response of 715% for 10 ppm of NO2 at an operating temperature of 170 ℃. Further, it showed high response (161%) for 10 ppm at 110 ℃. The ensuing low limit of detection (LOD) (∼18 ppb), repeatability (4 cycles), high selectivity among H2S, SO2, &amp; NH3, and stability over 100 days revealed excellent activity for NO2 detection. This work offers promising strategy for the fabrication of MoO3 NRs that are adaptable for NO2 sensing. [Display omitted] •Here, used a simplified Cu doping strategy to lower the operating temperature of the sensor.•The enhancement in the sensing performance due to oxygen vacancies (Vo) enrichment, carrier concentration, and charge transport caused by Cu in the lattice of α-MoO3.•Low limit of detection (LOD) (∼18 ppb), good repeatability for 4 cycles for NO2 demonstrates its outstanding performance.•Response of 715% and long-term stability (100 days) added its outstanding sensor candidates.</description><subject>Cu-α-MoO3</subject><subject>Limit of detection</subject><subject>Low temperature</subject><subject>Nano-ribbons</subject><subject>NO2</subject><subject>Stability</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHY-AAl2nMSuWKGKP6k0G1hbju2krlI7stOKchVOwUU4E07LmtU8jeY9zfsAuMYoxQiXt-s02DrNUEZSTAjD6ARMMKMkIYjSUzBBs6xIcoSKc3ARwhohlJMSTcBX9bFvtYU7IYWVRge40cqIQSv48528uorApbAu8aaunQ2w3sP5FirXG9vCxnm4Mu2q28OgbTCD2embKDstRwmFVdCL3iio9DDunIWugSvxKbxy2wCXVXYIaUU4JEQp-r4zUoy3l-CsEV3QV39zCt4fH97mz8mienqZ3y8Smc3okEgtJFOIYNHksqZFTnMplVQFVSiiKUoxowXLc8UkVjkrGS6zhjE1a2gjNVJkCvAxV3oXgtcN773ZCL_nGPGRLl_zSJePdPmRbvTcHT06PrYz2vMQ6VkZ4fnYlCtn_nH_AijChg0</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Aysha Parveen, R.</creator><creator>Vinoth, E.</creator><creator>Harish, S.</creator><creator>Hara, K.</creator><creator>Archana, J.</creator><creator>Ponnusamy, S.</creator><creator>Navaneethan, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230815</creationdate><title>Oxygen vacancies mediated α-MoO3 Nano-ribbons by Cu doping for highly sensitive, selective and rapid detection of hazardous NO2 for gas sensor application</title><author>Aysha Parveen, R. ; Vinoth, E. ; Harish, S. ; Hara, K. ; Archana, J. ; Ponnusamy, S. ; Navaneethan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-ceac8d031af4cb75474ccdcd57d001656a975844d8c1d4868162f88d9f7fce0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cu-α-MoO3</topic><topic>Limit of detection</topic><topic>Low temperature</topic><topic>Nano-ribbons</topic><topic>NO2</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aysha Parveen, R.</creatorcontrib><creatorcontrib>Vinoth, E.</creatorcontrib><creatorcontrib>Harish, S.</creatorcontrib><creatorcontrib>Hara, K.</creatorcontrib><creatorcontrib>Archana, J.</creatorcontrib><creatorcontrib>Ponnusamy, S.</creatorcontrib><creatorcontrib>Navaneethan, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aysha Parveen, R.</au><au>Vinoth, E.</au><au>Harish, S.</au><au>Hara, K.</au><au>Archana, J.</au><au>Ponnusamy, S.</au><au>Navaneethan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancies mediated α-MoO3 Nano-ribbons by Cu doping for highly sensitive, selective and rapid detection of hazardous NO2 for gas sensor application</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>389</volume><spage>133810</spage><pages>133810-</pages><artnum>133810</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>The demand for less toxic, less expensive, and low operating temperature-based sensors to enhance detection of NO2 leaks is driven by the growing concern over the hazardous impacts in many sectors. The superiority of layered structures and its better carrier transport is more desirable in gas sensors. The α-MoO3 is a rapidly developing hotspot material in the field of gas sensing due to its distinctive layered structure, accessibility, and environmental friendliness. Herein, α-MoO3 nano-ribbons (NRs) with increased carrier transport through oxygen vacancies (Vo) was achieved by Cu-doping. Interestingly, Vo and carrier concentration (n) enhanced in Cu-doped α-MoO3 NRs. Due to synergistic enhancements in mobility (μH ∼ 1.85 cm−2V−1s−1), diffusion coefficient (Dn ∼ 7.05 m2s−1) and n ∼ 6.07 × 1019, the Cu-doped (4 at%) α-MoO3 NRs selectively displayed an ultra-high response of 715% for 10 ppm of NO2 at an operating temperature of 170 ℃. Further, it showed high response (161%) for 10 ppm at 110 ℃. The ensuing low limit of detection (LOD) (∼18 ppb), repeatability (4 cycles), high selectivity among H2S, SO2, &amp; NH3, and stability over 100 days revealed excellent activity for NO2 detection. This work offers promising strategy for the fabrication of MoO3 NRs that are adaptable for NO2 sensing. [Display omitted] •Here, used a simplified Cu doping strategy to lower the operating temperature of the sensor.•The enhancement in the sensing performance due to oxygen vacancies (Vo) enrichment, carrier concentration, and charge transport caused by Cu in the lattice of α-MoO3.•Low limit of detection (LOD) (∼18 ppb), good repeatability for 4 cycles for NO2 demonstrates its outstanding performance.•Response of 715% and long-term stability (100 days) added its outstanding sensor candidates.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2023.133810</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2023-08, Vol.389, p.133810, Article 133810
issn 0925-4005
1873-3077
language eng
recordid cdi_crossref_primary_10_1016_j_snb_2023_133810
source ScienceDirect Freedom Collection 2022-2024
subjects Cu-α-MoO3
Limit of detection
Low temperature
Nano-ribbons
NO2
Stability
title Oxygen vacancies mediated α-MoO3 Nano-ribbons by Cu doping for highly sensitive, selective and rapid detection of hazardous NO2 for gas sensor application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancies%20mediated%20%CE%B1-MoO3%20Nano-ribbons%20by%20Cu%20doping%20for%20highly%20sensitive,%20selective%20and%20rapid%20detection%20of%20hazardous%20NO2%20for%20gas%20sensor%20application&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Aysha%20Parveen,%20R.&rft.date=2023-08-15&rft.volume=389&rft.spage=133810&rft.pages=133810-&rft.artnum=133810&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2023.133810&rft_dat=%3Celsevier_cross%3ES0925400523005257%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-ceac8d031af4cb75474ccdcd57d001656a975844d8c1d4868162f88d9f7fce0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true