Loading…

Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires

We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simula...

Full description

Saved in:
Bibliographic Details
Published in:Spatial statistics 2023-06, Vol.55, p.100746, Article 100746
Main Authors: Dabrowski, Joel Janek, Pagendam, Daniel Edward, Hilton, James, Sanderson, Conrad, MacKinlay, Daniel, Huston, Carolyn, Bolt, Andrew, Kuhnert, Petra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983
cites cdi_FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983
container_end_page
container_issue
container_start_page 100746
container_title Spatial statistics
container_volume 55
creator Dabrowski, Joel Janek
Pagendam, Daniel Edward
Hilton, James
Sanderson, Conrad
MacKinlay, Daniel
Huston, Carolyn
Bolt, Andrew
Kuhnert, Petra
description We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.
doi_str_mv 10.1016/j.spasta.2023.100746
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_spasta_2023_100746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211675323000210</els_id><sourcerecordid>S2211675323000210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKV_wME_kGI7jyYXJKh4VKqAA5ytrb0GhySubEPVv8dROHDiNKPRzmh2CLnkbMkZr67aZdhDiLAUTORJYquiOiEzITjPqlWZn_7h52QRQsvYeMTyUsxIewtHDBYG-vJxDFYFuhmM8z1q-oRfHroE8eD8Z6BJphoiUAjB9raDaN1AYdA0FUg8i9jv3Wjpncaus8M7dYYebKeN9RguyJmBLuDiF-fk7f7udf2YbZ8fNuubbaZSo5iBTo_UWvCcG17DilUNYzss6gKLSgNvsAFRGhC61qXCUpnC7GqmhGiqWjV1PifFlKu8C8GjkXtve_BHyZkcJ5OtnCaT42RymizZricbpm7fFr0MyuKgUKfyKkrt7P8BPwG6eJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires</title><source>ScienceDirect Freedom Collection</source><creator>Dabrowski, Joel Janek ; Pagendam, Daniel Edward ; Hilton, James ; Sanderson, Conrad ; MacKinlay, Daniel ; Huston, Carolyn ; Bolt, Andrew ; Kuhnert, Petra</creator><creatorcontrib>Dabrowski, Joel Janek ; Pagendam, Daniel Edward ; Hilton, James ; Sanderson, Conrad ; MacKinlay, Daniel ; Huston, Carolyn ; Bolt, Andrew ; Kuhnert, Petra</creatorcontrib><description>We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.</description><identifier>ISSN: 2211-6753</identifier><identifier>EISSN: 2211-6753</identifier><identifier>DOI: 10.1016/j.spasta.2023.100746</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>B-PINN ; Level-set method ; Neural network ; PINN ; Uncertainty quantification ; Variational inference</subject><ispartof>Spatial statistics, 2023-06, Vol.55, p.100746, Article 100746</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983</citedby><cites>FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dabrowski, Joel Janek</creatorcontrib><creatorcontrib>Pagendam, Daniel Edward</creatorcontrib><creatorcontrib>Hilton, James</creatorcontrib><creatorcontrib>Sanderson, Conrad</creatorcontrib><creatorcontrib>MacKinlay, Daniel</creatorcontrib><creatorcontrib>Huston, Carolyn</creatorcontrib><creatorcontrib>Bolt, Andrew</creatorcontrib><creatorcontrib>Kuhnert, Petra</creatorcontrib><title>Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires</title><title>Spatial statistics</title><description>We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.</description><subject>B-PINN</subject><subject>Level-set method</subject><subject>Neural network</subject><subject>PINN</subject><subject>Uncertainty quantification</subject><subject>Variational inference</subject><issn>2211-6753</issn><issn>2211-6753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKV_wME_kGI7jyYXJKh4VKqAA5ytrb0GhySubEPVv8dROHDiNKPRzmh2CLnkbMkZr67aZdhDiLAUTORJYquiOiEzITjPqlWZn_7h52QRQsvYeMTyUsxIewtHDBYG-vJxDFYFuhmM8z1q-oRfHroE8eD8Z6BJphoiUAjB9raDaN1AYdA0FUg8i9jv3Wjpncaus8M7dYYebKeN9RguyJmBLuDiF-fk7f7udf2YbZ8fNuubbaZSo5iBTo_UWvCcG17DilUNYzss6gKLSgNvsAFRGhC61qXCUpnC7GqmhGiqWjV1PifFlKu8C8GjkXtve_BHyZkcJ5OtnCaT42RymizZricbpm7fFr0MyuKgUKfyKkrt7P8BPwG6eJs</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Dabrowski, Joel Janek</creator><creator>Pagendam, Daniel Edward</creator><creator>Hilton, James</creator><creator>Sanderson, Conrad</creator><creator>MacKinlay, Daniel</creator><creator>Huston, Carolyn</creator><creator>Bolt, Andrew</creator><creator>Kuhnert, Petra</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202306</creationdate><title>Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires</title><author>Dabrowski, Joel Janek ; Pagendam, Daniel Edward ; Hilton, James ; Sanderson, Conrad ; MacKinlay, Daniel ; Huston, Carolyn ; Bolt, Andrew ; Kuhnert, Petra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>B-PINN</topic><topic>Level-set method</topic><topic>Neural network</topic><topic>PINN</topic><topic>Uncertainty quantification</topic><topic>Variational inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabrowski, Joel Janek</creatorcontrib><creatorcontrib>Pagendam, Daniel Edward</creatorcontrib><creatorcontrib>Hilton, James</creatorcontrib><creatorcontrib>Sanderson, Conrad</creatorcontrib><creatorcontrib>MacKinlay, Daniel</creatorcontrib><creatorcontrib>Huston, Carolyn</creatorcontrib><creatorcontrib>Bolt, Andrew</creatorcontrib><creatorcontrib>Kuhnert, Petra</creatorcontrib><collection>CrossRef</collection><jtitle>Spatial statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabrowski, Joel Janek</au><au>Pagendam, Daniel Edward</au><au>Hilton, James</au><au>Sanderson, Conrad</au><au>MacKinlay, Daniel</au><au>Huston, Carolyn</au><au>Bolt, Andrew</au><au>Kuhnert, Petra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires</atitle><jtitle>Spatial statistics</jtitle><date>2023-06</date><risdate>2023</risdate><volume>55</volume><spage>100746</spage><pages>100746-</pages><artnum>100746</artnum><issn>2211-6753</issn><eissn>2211-6753</eissn><abstract>We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.spasta.2023.100746</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-6753
ispartof Spatial statistics, 2023-06, Vol.55, p.100746, Article 100746
issn 2211-6753
2211-6753
language eng
recordid cdi_crossref_primary_10_1016_j_spasta_2023_100746
source ScienceDirect Freedom Collection
subjects B-PINN
Level-set method
Neural network
PINN
Uncertainty quantification
Variational inference
title Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Physics%20Informed%20Neural%20Networks%20for%20data%20assimilation%20and%20spatio-temporal%20modelling%20of%20wildfires&rft.jtitle=Spatial%20statistics&rft.au=Dabrowski,%20Joel%20Janek&rft.date=2023-06&rft.volume=55&rft.spage=100746&rft.pages=100746-&rft.artnum=100746&rft.issn=2211-6753&rft.eissn=2211-6753&rft_id=info:doi/10.1016/j.spasta.2023.100746&rft_dat=%3Celsevier_cross%3ES2211675323000210%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true