Loading…
Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires
We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simula...
Saved in:
Published in: | Spatial statistics 2023-06, Vol.55, p.100746, Article 100746 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983 |
container_end_page | |
container_issue | |
container_start_page | 100746 |
container_title | Spatial statistics |
container_volume | 55 |
creator | Dabrowski, Joel Janek Pagendam, Daniel Edward Hilton, James Sanderson, Conrad MacKinlay, Daniel Huston, Carolyn Bolt, Andrew Kuhnert, Petra |
description | We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data. |
doi_str_mv | 10.1016/j.spasta.2023.100746 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_spasta_2023_100746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211675323000210</els_id><sourcerecordid>S2211675323000210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKV_wME_kGI7jyYXJKh4VKqAA5ytrb0GhySubEPVv8dROHDiNKPRzmh2CLnkbMkZr67aZdhDiLAUTORJYquiOiEzITjPqlWZn_7h52QRQsvYeMTyUsxIewtHDBYG-vJxDFYFuhmM8z1q-oRfHroE8eD8Z6BJphoiUAjB9raDaN1AYdA0FUg8i9jv3Wjpncaus8M7dYYebKeN9RguyJmBLuDiF-fk7f7udf2YbZ8fNuubbaZSo5iBTo_UWvCcG17DilUNYzss6gKLSgNvsAFRGhC61qXCUpnC7GqmhGiqWjV1PifFlKu8C8GjkXtve_BHyZkcJ5OtnCaT42RymizZricbpm7fFr0MyuKgUKfyKkrt7P8BPwG6eJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires</title><source>ScienceDirect Freedom Collection</source><creator>Dabrowski, Joel Janek ; Pagendam, Daniel Edward ; Hilton, James ; Sanderson, Conrad ; MacKinlay, Daniel ; Huston, Carolyn ; Bolt, Andrew ; Kuhnert, Petra</creator><creatorcontrib>Dabrowski, Joel Janek ; Pagendam, Daniel Edward ; Hilton, James ; Sanderson, Conrad ; MacKinlay, Daniel ; Huston, Carolyn ; Bolt, Andrew ; Kuhnert, Petra</creatorcontrib><description>We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.</description><identifier>ISSN: 2211-6753</identifier><identifier>EISSN: 2211-6753</identifier><identifier>DOI: 10.1016/j.spasta.2023.100746</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>B-PINN ; Level-set method ; Neural network ; PINN ; Uncertainty quantification ; Variational inference</subject><ispartof>Spatial statistics, 2023-06, Vol.55, p.100746, Article 100746</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983</citedby><cites>FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dabrowski, Joel Janek</creatorcontrib><creatorcontrib>Pagendam, Daniel Edward</creatorcontrib><creatorcontrib>Hilton, James</creatorcontrib><creatorcontrib>Sanderson, Conrad</creatorcontrib><creatorcontrib>MacKinlay, Daniel</creatorcontrib><creatorcontrib>Huston, Carolyn</creatorcontrib><creatorcontrib>Bolt, Andrew</creatorcontrib><creatorcontrib>Kuhnert, Petra</creatorcontrib><title>Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires</title><title>Spatial statistics</title><description>We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.</description><subject>B-PINN</subject><subject>Level-set method</subject><subject>Neural network</subject><subject>PINN</subject><subject>Uncertainty quantification</subject><subject>Variational inference</subject><issn>2211-6753</issn><issn>2211-6753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKV_wME_kGI7jyYXJKh4VKqAA5ytrb0GhySubEPVv8dROHDiNKPRzmh2CLnkbMkZr67aZdhDiLAUTORJYquiOiEzITjPqlWZn_7h52QRQsvYeMTyUsxIewtHDBYG-vJxDFYFuhmM8z1q-oRfHroE8eD8Z6BJphoiUAjB9raDaN1AYdA0FUg8i9jv3Wjpncaus8M7dYYebKeN9RguyJmBLuDiF-fk7f7udf2YbZ8fNuubbaZSo5iBTo_UWvCcG17DilUNYzss6gKLSgNvsAFRGhC61qXCUpnC7GqmhGiqWjV1PifFlKu8C8GjkXtve_BHyZkcJ5OtnCaT42RymizZricbpm7fFr0MyuKgUKfyKkrt7P8BPwG6eJs</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Dabrowski, Joel Janek</creator><creator>Pagendam, Daniel Edward</creator><creator>Hilton, James</creator><creator>Sanderson, Conrad</creator><creator>MacKinlay, Daniel</creator><creator>Huston, Carolyn</creator><creator>Bolt, Andrew</creator><creator>Kuhnert, Petra</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202306</creationdate><title>Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires</title><author>Dabrowski, Joel Janek ; Pagendam, Daniel Edward ; Hilton, James ; Sanderson, Conrad ; MacKinlay, Daniel ; Huston, Carolyn ; Bolt, Andrew ; Kuhnert, Petra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>B-PINN</topic><topic>Level-set method</topic><topic>Neural network</topic><topic>PINN</topic><topic>Uncertainty quantification</topic><topic>Variational inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabrowski, Joel Janek</creatorcontrib><creatorcontrib>Pagendam, Daniel Edward</creatorcontrib><creatorcontrib>Hilton, James</creatorcontrib><creatorcontrib>Sanderson, Conrad</creatorcontrib><creatorcontrib>MacKinlay, Daniel</creatorcontrib><creatorcontrib>Huston, Carolyn</creatorcontrib><creatorcontrib>Bolt, Andrew</creatorcontrib><creatorcontrib>Kuhnert, Petra</creatorcontrib><collection>CrossRef</collection><jtitle>Spatial statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabrowski, Joel Janek</au><au>Pagendam, Daniel Edward</au><au>Hilton, James</au><au>Sanderson, Conrad</au><au>MacKinlay, Daniel</au><au>Huston, Carolyn</au><au>Bolt, Andrew</au><au>Kuhnert, Petra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires</atitle><jtitle>Spatial statistics</jtitle><date>2023-06</date><risdate>2023</risdate><volume>55</volume><spage>100746</spage><pages>100746-</pages><artnum>100746</artnum><issn>2211-6753</issn><eissn>2211-6753</eissn><abstract>We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.spasta.2023.100746</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-6753 |
ispartof | Spatial statistics, 2023-06, Vol.55, p.100746, Article 100746 |
issn | 2211-6753 2211-6753 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_spasta_2023_100746 |
source | ScienceDirect Freedom Collection |
subjects | B-PINN Level-set method Neural network PINN Uncertainty quantification Variational inference |
title | Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Physics%20Informed%20Neural%20Networks%20for%20data%20assimilation%20and%20spatio-temporal%20modelling%20of%20wildfires&rft.jtitle=Spatial%20statistics&rft.au=Dabrowski,%20Joel%20Janek&rft.date=2023-06&rft.volume=55&rft.spage=100746&rft.pages=100746-&rft.artnum=100746&rft.issn=2211-6753&rft.eissn=2211-6753&rft_id=info:doi/10.1016/j.spasta.2023.100746&rft_dat=%3Celsevier_cross%3ES2211675323000210%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-ad2028d2131f18a706900be484e46da19e9a25fa2d8d5ce5cf4fb80c22968c983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |