Loading…
Finding relevant features for zero-resource query-by-example search on speech
Zero-resource query-by-example search on speech strategies have raised the interest of the research community, as they do not imply training (and therefore, large amounts of training data) or any knowledge about either the language to be processed or any others. These systems usually rely on Mel-fre...
Saved in:
Published in: | Speech communication 2016-11, Vol.84, p.24-35 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zero-resource query-by-example search on speech strategies have raised the interest of the research community, as they do not imply training (and therefore, large amounts of training data) or any knowledge about either the language to be processed or any others. These systems usually rely on Mel-frequency cepstral coefficients (MFCCs) for speech representation and dynamic time warping (DTW) or any of its variants for performing the search. Nevertheless, which features to use in this task is still an open research problem, and the use of large feature sets combined with feature selection approaches have not been addressed yet in the query-by-example search on speech scenario. In this paper, we present two methods to select the most relevant features among a large set of acoustic features, for the purpose of estimating the relevance of each feature using the costs of the best alignment path (obtained when performing DTW) and their neighbouring region. To prove the validity of these methods, experiments were carried out in four different search on speech scenarios that were used in international benchmarks, namely Albayzin 2014 search on speech evaluation, MediaEval spoken web search SWS 2013, and MediaEval query-by-example search on speech QUESST2014 and QUESST2015. Experimental results showed a dramatic improvement in the results when reducing the feature set using the proposed techniques, especially in the case of the relevance-based approaches. A comparison between the proposed methods and other representations such as MFCCs, phonetic posteriorgrams and dimensionality reduction based on principal component analysis, showed that the zero-resource approaches presented in this paper are promising, as they outperformed more extended approaches in all the experimental scenarios. The feature relevance estimation approaches, apart from improving search on speech results, also revealed features other than MFCCs that seemed to be a value-added in query-by-example tasks. |
---|---|
ISSN: | 0167-6393 1872-7182 |
DOI: | 10.1016/j.specom.2016.08.003 |