Loading…
Recombination mechanism of photoluminescence in InN epilayers
We report an investigation of the recombination mechanism for photoluminescence (PL) in InN epilayers grown by molecular beam epitaxy and metal-organic chemical vapor deposition with a wide range of free electron concentrations from 3.5×10 17–5×10 19 cm −3. We found that the PL spectra are strongly...
Saved in:
Published in: | Solid state communications 2006, Vol.137 (4), p.203-207 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report an investigation of the recombination mechanism for photoluminescence (PL) in InN epilayers grown by molecular beam epitaxy and metal-organic chemical vapor deposition with a wide range of free electron concentrations from 3.5×10
17–5×10
19
cm
−3. We found that the PL spectra are strongly blueshifted with increasing excitation intensity. For all the samples studied, the exponent of the relationship between the integrated PL intensity and the excitation intensity is very close to unity and independent of the temperature. By assuming Gaussian fluctuations of the random impurity potential, calculation based on the ‘free-to-bound’ recombination model can be used to interpret our results very well and it correctly reproduces the development of the total PL peak shift as a function of carrier concentration. It is concluded that the PL transition mechanism in InN epifilms can be characterized as the recombination of free electrons in the conduction band to nonequilibrium holes in the valence band tail. |
---|---|
ISSN: | 0038-1098 1879-2766 |
DOI: | 10.1016/j.ssc.2005.11.013 |