Loading…
A physical model of floating body effects in polysilicon thin film transistors
Based on a closed form of the base–emitter voltage of the parasitic bipolar transistor, a physical model of floating body effects is proposed for polysilicon thin film transistors, which takes into account the polysilicon graded pn junction and the generation rate including the Poole-Frenkel effect....
Saved in:
Published in: | Solid-state electronics 2008-06, Vol.52 (6), p.930-936 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on a closed form of the base–emitter voltage of the parasitic bipolar transistor, a physical model of floating body effects is proposed for polysilicon thin film transistors, which takes into account the polysilicon graded pn junction and the generation rate including the Poole-Frenkel effect. Simulated results by this model are in good agreement with experimental data. It is shown that the action of a parasitic bipolar transistor should be taken into account only when the channel length is short enough due to the much smaller carrier mobility in polysilicon compared with single crystalline silicon. Whereas, the parasitic bipolar transistor gain (β) increases sharply with decreasing the channel length when the channel length is less than 5μm, which is due to the rapid increase of the base transport factor (αT). |
---|---|
ISSN: | 0038-1101 1879-2405 |
DOI: | 10.1016/j.sse.2008.01.008 |