Loading…

The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations

Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generali...

Full description

Saved in:
Bibliographic Details
Published in:Social science research 2025-02, Vol.126, p.103099, Article 103099
Main Authors: Hölzl, Johanna, Keusch, Florian, Sajons, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73
container_end_page
container_issue
container_start_page 103099
container_title Social science research
container_volume 126
creator Hölzl, Johanna
Keusch, Florian
Sajons, Christoph
description Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.
doi_str_mv 10.1016/j.ssresearch.2024.103099
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ssresearch_2024_103099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0049089X24001212</els_id><sourcerecordid>S0049089X24001212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxfegYK1-hzkqNHU32cTkWItWoeClgrdl_8zaLU2iO6nSb--WFjx6mYHhvce8H2Mg-FRwUd1tpkQRCXW062nOc5nOBW-aMzbiXDYZr5v3C3ZJtOFciIrXI9at1gg3baDbHSH0HhZ9_7FFWEXsHIHTg4bQwZBU1Nugt0A2YGeRIIMZ0J4GbPUQLET8DvgzARvDEL52OAHduXS1fdumrKTpO7pi515vCa9Pe8zenh5X8-ds-bp4mc-WmRXpycwgt6asfa6FEVhKbwpTa1PluinTkM4JLxtZGeddkqA0WOa-0rIusRD6vhiz-phrY39g4tVnDK2OeyW4OrBSG_XHSh1YqSOrZH04WjH9lypFdWrsQiozKNeH_0N-AWjqe-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations</title><source>ScienceDirect Freedom Collection</source><creator>Hölzl, Johanna ; Keusch, Florian ; Sajons, Christoph</creator><creatorcontrib>Hölzl, Johanna ; Keusch, Florian ; Sajons, Christoph</creatorcontrib><description>Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.</description><identifier>ISSN: 0049-089X</identifier><identifier>DOI: 10.1016/j.ssresearch.2024.103099</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Generalizability ; Google Trends ; Reliability ; Systematic literature review ; Validity</subject><ispartof>Social science research, 2025-02, Vol.126, p.103099, Article 103099</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73</cites><orcidid>0009-0002-4954-2209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hölzl, Johanna</creatorcontrib><creatorcontrib>Keusch, Florian</creatorcontrib><creatorcontrib>Sajons, Christoph</creatorcontrib><title>The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations</title><title>Social science research</title><description>Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.</description><subject>Generalizability</subject><subject>Google Trends</subject><subject>Reliability</subject><subject>Systematic literature review</subject><subject>Validity</subject><issn>0049-089X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxfegYK1-hzkqNHU32cTkWItWoeClgrdl_8zaLU2iO6nSb--WFjx6mYHhvce8H2Mg-FRwUd1tpkQRCXW062nOc5nOBW-aMzbiXDYZr5v3C3ZJtOFciIrXI9at1gg3baDbHSH0HhZ9_7FFWEXsHIHTg4bQwZBU1Nugt0A2YGeRIIMZ0J4GbPUQLET8DvgzARvDEL52OAHduXS1fdumrKTpO7pi515vCa9Pe8zenh5X8-ds-bp4mc-WmRXpycwgt6asfa6FEVhKbwpTa1PluinTkM4JLxtZGeddkqA0WOa-0rIusRD6vhiz-phrY39g4tVnDK2OeyW4OrBSG_XHSh1YqSOrZH04WjH9lypFdWrsQiozKNeH_0N-AWjqe-0</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Hölzl, Johanna</creator><creator>Keusch, Florian</creator><creator>Sajons, Christoph</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-4954-2209</orcidid></search><sort><creationdate>202502</creationdate><title>The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations</title><author>Hölzl, Johanna ; Keusch, Florian ; Sajons, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Generalizability</topic><topic>Google Trends</topic><topic>Reliability</topic><topic>Systematic literature review</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hölzl, Johanna</creatorcontrib><creatorcontrib>Keusch, Florian</creatorcontrib><creatorcontrib>Sajons, Christoph</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Social science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hölzl, Johanna</au><au>Keusch, Florian</au><au>Sajons, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations</atitle><jtitle>Social science research</jtitle><date>2025-02</date><risdate>2025</risdate><volume>126</volume><spage>103099</spage><pages>103099-</pages><artnum>103099</artnum><issn>0049-089X</issn><abstract>Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ssresearch.2024.103099</doi><orcidid>https://orcid.org/0009-0002-4954-2209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0049-089X
ispartof Social science research, 2025-02, Vol.126, p.103099, Article 103099
issn 0049-089X
language eng
recordid cdi_crossref_primary_10_1016_j_ssresearch_2024_103099
source ScienceDirect Freedom Collection
subjects Generalizability
Google Trends
Reliability
Systematic literature review
Validity
title The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20(mis)use%20of%20Google%20Trends%20data%20in%20the%20social%20sciences%20-%20A%20systematic%20review,%20critique,%20and%20recommendations&rft.jtitle=Social%20science%20research&rft.au=H%C3%B6lzl,%20Johanna&rft.date=2025-02&rft.volume=126&rft.spage=103099&rft.pages=103099-&rft.artnum=103099&rft.issn=0049-089X&rft_id=info:doi/10.1016/j.ssresearch.2024.103099&rft_dat=%3Celsevier_cross%3ES0049089X24001212%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true