Loading…
The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations
Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generali...
Saved in:
Published in: | Social science research 2025-02, Vol.126, p.103099, Article 103099 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73 |
container_end_page | |
container_issue | |
container_start_page | 103099 |
container_title | Social science research |
container_volume | 126 |
creator | Hölzl, Johanna Keusch, Florian Sajons, Christoph |
description | Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data. |
doi_str_mv | 10.1016/j.ssresearch.2024.103099 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ssresearch_2024_103099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0049089X24001212</els_id><sourcerecordid>S0049089X24001212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxfegYK1-hzkqNHU32cTkWItWoeClgrdl_8zaLU2iO6nSb--WFjx6mYHhvce8H2Mg-FRwUd1tpkQRCXW062nOc5nOBW-aMzbiXDYZr5v3C3ZJtOFciIrXI9at1gg3baDbHSH0HhZ9_7FFWEXsHIHTg4bQwZBU1Nugt0A2YGeRIIMZ0J4GbPUQLET8DvgzARvDEL52OAHduXS1fdumrKTpO7pi515vCa9Pe8zenh5X8-ds-bp4mc-WmRXpycwgt6asfa6FEVhKbwpTa1PluinTkM4JLxtZGeddkqA0WOa-0rIusRD6vhiz-phrY39g4tVnDK2OeyW4OrBSG_XHSh1YqSOrZH04WjH9lypFdWrsQiozKNeH_0N-AWjqe-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations</title><source>ScienceDirect Freedom Collection</source><creator>Hölzl, Johanna ; Keusch, Florian ; Sajons, Christoph</creator><creatorcontrib>Hölzl, Johanna ; Keusch, Florian ; Sajons, Christoph</creatorcontrib><description>Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.</description><identifier>ISSN: 0049-089X</identifier><identifier>DOI: 10.1016/j.ssresearch.2024.103099</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Generalizability ; Google Trends ; Reliability ; Systematic literature review ; Validity</subject><ispartof>Social science research, 2025-02, Vol.126, p.103099, Article 103099</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73</cites><orcidid>0009-0002-4954-2209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hölzl, Johanna</creatorcontrib><creatorcontrib>Keusch, Florian</creatorcontrib><creatorcontrib>Sajons, Christoph</creatorcontrib><title>The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations</title><title>Social science research</title><description>Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.</description><subject>Generalizability</subject><subject>Google Trends</subject><subject>Reliability</subject><subject>Systematic literature review</subject><subject>Validity</subject><issn>0049-089X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxfegYK1-hzkqNHU32cTkWItWoeClgrdl_8zaLU2iO6nSb--WFjx6mYHhvce8H2Mg-FRwUd1tpkQRCXW062nOc5nOBW-aMzbiXDYZr5v3C3ZJtOFciIrXI9at1gg3baDbHSH0HhZ9_7FFWEXsHIHTg4bQwZBU1Nugt0A2YGeRIIMZ0J4GbPUQLET8DvgzARvDEL52OAHduXS1fdumrKTpO7pi515vCa9Pe8zenh5X8-ds-bp4mc-WmRXpycwgt6asfa6FEVhKbwpTa1PluinTkM4JLxtZGeddkqA0WOa-0rIusRD6vhiz-phrY39g4tVnDK2OeyW4OrBSG_XHSh1YqSOrZH04WjH9lypFdWrsQiozKNeH_0N-AWjqe-0</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Hölzl, Johanna</creator><creator>Keusch, Florian</creator><creator>Sajons, Christoph</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-4954-2209</orcidid></search><sort><creationdate>202502</creationdate><title>The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations</title><author>Hölzl, Johanna ; Keusch, Florian ; Sajons, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Generalizability</topic><topic>Google Trends</topic><topic>Reliability</topic><topic>Systematic literature review</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hölzl, Johanna</creatorcontrib><creatorcontrib>Keusch, Florian</creatorcontrib><creatorcontrib>Sajons, Christoph</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Social science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hölzl, Johanna</au><au>Keusch, Florian</au><au>Sajons, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations</atitle><jtitle>Social science research</jtitle><date>2025-02</date><risdate>2025</risdate><volume>126</volume><spage>103099</spage><pages>103099-</pages><artnum>103099</artnum><issn>0049-089X</issn><abstract>Researchers increasingly use aggregated search data from Google Trends to study a wide range of phenomena. Although this new data source possesses some important practical and methodological benefits, it also carries substantial challenges with respect to internal validity, reliability, and generalizability. In this paper, we describe and assess the existing applied research with Google Trends data in the social sciences. We conduct a systematic literature review of 360 studies using Google Trends data to (1) illustrate habits and trends and (2) examine whether and how researchers take the identified challenges into account. The results show that the large majority of the literature fails to test the internal validity of their Google Trends measure, does not consider whether their data are reliable across samples, and does not discuss the generalizability of their results. We conclude by stating practical recommendations that will help researchers to address these issues and properly work with Google Trends data.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ssresearch.2024.103099</doi><orcidid>https://orcid.org/0009-0002-4954-2209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-089X |
ispartof | Social science research, 2025-02, Vol.126, p.103099, Article 103099 |
issn | 0049-089X |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ssresearch_2024_103099 |
source | ScienceDirect Freedom Collection |
subjects | Generalizability Google Trends Reliability Systematic literature review Validity |
title | The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20(mis)use%20of%20Google%20Trends%20data%20in%20the%20social%20sciences%20-%20A%20systematic%20review,%20critique,%20and%20recommendations&rft.jtitle=Social%20science%20research&rft.au=H%C3%B6lzl,%20Johanna&rft.date=2025-02&rft.volume=126&rft.spage=103099&rft.pages=103099-&rft.artnum=103099&rft.issn=0049-089X&rft_id=info:doi/10.1016/j.ssresearch.2024.103099&rft_dat=%3Celsevier_cross%3ES0049089X24001212%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1089-be0cb58f2a1b1e54fb3b8ab62a9562a4dd1f4946bdfda1be4be52f6a485e31a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |