Loading…
Simulating water and nitrogen runoff with APSIM
To determine the impact of potential reductions of terrain-targeted nitrogen (N) fertilisation rates on N losses a simulation study was carried out using the Agricultural Production Systems Simulator (APSIM). To simulate N runoff a simple approach was used, in which runoff is based on the N concentr...
Saved in:
Published in: | Soil & tillage research 2023-03, Vol.227, p.105593, Article 105593 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To determine the impact of potential reductions of terrain-targeted nitrogen (N) fertilisation rates on N losses a simulation study was carried out using the Agricultural Production Systems Simulator (APSIM). To simulate N runoff a simple approach was used, in which runoff is based on the N concentration in the soil solution and an extraction coefficient. Firstly, APSIM parameters that have the largest effect on runoff of water and N were determined for terrains with different slopes for a poorly drained silt loam. A sensitivity analysis was then conducted to assess the effect of soil hydraulic properties and soil organic carbon content on runoff losses. Finally, APSIM was set up to simulate pasture production and water and N dynamics (including pasture N uptake, leaching and N runoff) for a farm on rolling hills in South Canterbury, New Zealand. Two different fertilisation approaches were used, either scheduled or based on the aboveground N concentration of the pasture. For the poorly drained silt loam, the rainfall intensity and the surface conductance had the highest effect on the amount of water lost by runoff. Soil hydraulic conductivity at saturation and field capacity, as well as plant available water content also controlled runoff of water and N, while the organic carbon content of the topsoil had less effect on N runoff. Both the extraction coefficient and the depth considered to exchange N with the runoff water affected the amount of N lost via runoff. Using the aboveground pasture N concentration prior to fertilisation had positive effects on pasture yield and reduced N runoff losses.
•a simple approach was developed to include N runoff in APSIM.•the approach is based on the soil solution`s N content and an extraction coefficient.•both the extraction coefficient and the depth considered influenced N runoff.•hydraulic conductivity and surface conductance highly affected water runoff.•Rainfall intensity should be considered sub-daily for simulating water runoff. |
---|---|
ISSN: | 0167-1987 1879-3444 |
DOI: | 10.1016/j.still.2022.105593 |