Loading…

Improving the high temperature abrasion resistance of thermally sprayed Cr3C2-NiCr coatings by WC addition

Two experimental agglomerated and sintered (a&s) feedstock powders were prepared, in order to reveal the role of WC addition on the microstructure, hardness, and the abrasion resistance of HVOF-sprayed Cr3C2-NiCr coatings. These powders contained 10wt.% of sub-micron WC, 20 or 10wt.% of nickel b...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2018-03, Vol.337, p.296-305
Main Authors: Janka, Leo, Berger, Lutz-Michael, Norpoth, Jonas, Trache, Richard, Thiele, Sven, Tomastik, Christian, Matikainen, Ville, Vuoristo, Petri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two experimental agglomerated and sintered (a&s) feedstock powders were prepared, in order to reveal the role of WC addition on the microstructure, hardness, and the abrasion resistance of HVOF-sprayed Cr3C2-NiCr coatings. These powders contained 10wt.% of sub-micron WC, 20 or 10wt.% of nickel binder, and Cr3C2 as balance. Experimental coatings were deposited by a liquid fueled high velocity oxygen-fuel (HVOF) spray process and subsequently heat treated at 800 °C for 8h to simulate elevated temperature service conditions. The microstructures of the powders and coatings were studied by SEM and X-ray diffraction, and the hardnesses of coatings were probed by means of micro and nanoindentation. In addition, the high stress abrasion resistance was tested in a temperature range from room temperature up to 800 °C. The microstructural characterization of the coatings displayed the presence of WC and tungsten containing Cr3C2 grains. The coating hardness increased after heat treatment, which stemmed from precipitation of secondary carbides and solid solution strengthening of the binder by tungsten. In addition, the study revealed that both experimental coatings have high wear resistance at room and elevated temperatures.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2018.01.035