Loading…

N-doped carbon-based catalysts in situ generation hydrogen peroxide via 2-electron oxygen reduction reaction for degradation of organic contaminants in heterogeneous electro-Fenton process: A mini review

Heterogeneous electrochemical advanced oxidation processes (EAOPs), especial in situ catalytic production of hydrogen peroxide (H2O2) via 2-electron oxygen reduction reaction (ORR), has gained increasing attention owing to its safety, efficiency and cost-effectiveness. This review aims to provide a...

Full description

Saved in:
Bibliographic Details
Published in:Surfaces and interfaces 2023-06, Vol.38, p.102879, Article 102879
Main Authors: Guo, Yanjun, Tang, Chenliu, Cao, Chuan, Hu, Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heterogeneous electrochemical advanced oxidation processes (EAOPs), especial in situ catalytic production of hydrogen peroxide (H2O2) via 2-electron oxygen reduction reaction (ORR), has gained increasing attention owing to its safety, efficiency and cost-effectiveness. This review aims to provide a concise summary on the recent development of N-doped carbon-based catalysts as cathode for the improvement of ORR activity, the selectivity of H2O2 and the yield of hydroxyl radical (·OH). The methods of nitrogen doped in carbon-based catalysts, which are dominated by single nitrogen form and coexisting with multiple nitrogen forms, are introduced in this manuscript. The effects and mechanisms of different nitrogen forms on 2-electron ORR and ·OH are discussed in detail, and the synergistic effect of N co-doping with other heteroatoms (F/P/S/O) on ORR is analyzed. Finally, research directions on enhancing ORR activity and the yield of H2O2 and ·OH are put forward from four aspects: preparation methods, mechanism analysis, coupling effects and density functional theory (DFT) calculation. [Display omitted]
ISSN:2468-0230
2468-0230
DOI:10.1016/j.surfin.2023.102879