Loading…

Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption

Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO...

Full description

Saved in:
Bibliographic Details
Published in:Surfaces and interfaces 2025-01, Vol.56, p.105617, Article 105617
Main Authors: Rekha Phani, P․S․D․, Sahu, Somnath, Gurrala, Ravi Chandra, Dobbidi, Pamu, Raidongia, Kalyan, Latha, B․Swarna, Babu, B․Kishore, Annapurna, N․
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543
container_end_page
container_issue
container_start_page 105617
container_title Surfaces and interfaces
container_volume 56
creator Rekha Phani, P․S․D․
Sahu, Somnath
Gurrala, Ravi Chandra
Dobbidi, Pamu
Raidongia, Kalyan
Latha, B․Swarna
Babu, B․Kishore
Annapurna, N․
description Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO composites are studied via a hydrothermal method, and their structural, microstructural, and electromagnetic properties are comprehensively examined. The XPS spectra indicated increased oxygen vacancies in the NiO/rGO composite, contributing to enhanced microwave absorption. Integrating rGO into NiO generated oxygen vacancies, offsetting charge imbalances and promoting interfacial and dipolar polarization. The conductive rGO network and the flower-like NiO morphology enhanced dielectric loss, as the unique structure provided a large surface area and effective impedance mismatch. Additionally, the folded and curled nanosheets extended the propagation paths of electromagnetic waves, enabling multiple reflections and greater attenuation. The NiO and NiO/rGO composites achieved maximum reflection losses of -40 dB and -60 dB, respectively, at a 2 mm thickness. These findings underscore the potential of 3D flower-like NiO and NiO/rGO composites for high-performance microwave absorption. [Display omitted]
doi_str_mv 10.1016/j.surfin.2024.105617
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_surfin_2024_105617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2468023024017735</els_id><sourcerecordid>S2468023024017735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543</originalsourceid><addsrcrecordid>eNp9UMtOwzAQ9AEkqtI_4OAfSLvOy8kFCVVQkCp6gbPl2JvUFXWqdVrUv8dROPc0q52d0eww9iRgKUCUq8MynKl1fplCmsdVUQp5x2ZpXlYJpBk8sEUIBwAQlawLUcxYt8ULku6c73i4eqTOhcEZ7vyA1GqDIY780-249nbEFW12fI-R7cNAZzOcKd60PXH0e-0NWn50hvpffUGum9DTaXC9f2T3rf4JuPjHOft-e_1avyfb3eZj_bJNjACQiWlllqKtBNZVWum00bqAQkrIyiyX1kosY3rZZDZyNda6zQrblDLPBWgo8mzO8sk3RgiBsFUnckdNVyVAjR2pg5o6UmNHauooyp4nGcZsF4ekgnE4fuMIzaBs724b_AE6LXUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption</title><source>ScienceDirect Journals</source><creator>Rekha Phani, P․S․D․ ; Sahu, Somnath ; Gurrala, Ravi Chandra ; Dobbidi, Pamu ; Raidongia, Kalyan ; Latha, B․Swarna ; Babu, B․Kishore ; Annapurna, N․</creator><creatorcontrib>Rekha Phani, P․S․D․ ; Sahu, Somnath ; Gurrala, Ravi Chandra ; Dobbidi, Pamu ; Raidongia, Kalyan ; Latha, B․Swarna ; Babu, B․Kishore ; Annapurna, N․</creatorcontrib><description>Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO composites are studied via a hydrothermal method, and their structural, microstructural, and electromagnetic properties are comprehensively examined. The XPS spectra indicated increased oxygen vacancies in the NiO/rGO composite, contributing to enhanced microwave absorption. Integrating rGO into NiO generated oxygen vacancies, offsetting charge imbalances and promoting interfacial and dipolar polarization. The conductive rGO network and the flower-like NiO morphology enhanced dielectric loss, as the unique structure provided a large surface area and effective impedance mismatch. Additionally, the folded and curled nanosheets extended the propagation paths of electromagnetic waves, enabling multiple reflections and greater attenuation. The NiO and NiO/rGO composites achieved maximum reflection losses of -40 dB and -60 dB, respectively, at a 2 mm thickness. These findings underscore the potential of 3D flower-like NiO and NiO/rGO composites for high-performance microwave absorption. [Display omitted]</description><identifier>ISSN: 2468-0230</identifier><identifier>DOI: 10.1016/j.surfin.2024.105617</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electromagnetic parameters ; Microflower ; Microwave absorption ; Reflection loss</subject><ispartof>Surfaces and interfaces, 2025-01, Vol.56, p.105617, Article 105617</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543</cites><orcidid>0000-0003-3201-2359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rekha Phani, P․S․D․</creatorcontrib><creatorcontrib>Sahu, Somnath</creatorcontrib><creatorcontrib>Gurrala, Ravi Chandra</creatorcontrib><creatorcontrib>Dobbidi, Pamu</creatorcontrib><creatorcontrib>Raidongia, Kalyan</creatorcontrib><creatorcontrib>Latha, B․Swarna</creatorcontrib><creatorcontrib>Babu, B․Kishore</creatorcontrib><creatorcontrib>Annapurna, N․</creatorcontrib><title>Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption</title><title>Surfaces and interfaces</title><description>Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO composites are studied via a hydrothermal method, and their structural, microstructural, and electromagnetic properties are comprehensively examined. The XPS spectra indicated increased oxygen vacancies in the NiO/rGO composite, contributing to enhanced microwave absorption. Integrating rGO into NiO generated oxygen vacancies, offsetting charge imbalances and promoting interfacial and dipolar polarization. The conductive rGO network and the flower-like NiO morphology enhanced dielectric loss, as the unique structure provided a large surface area and effective impedance mismatch. Additionally, the folded and curled nanosheets extended the propagation paths of electromagnetic waves, enabling multiple reflections and greater attenuation. The NiO and NiO/rGO composites achieved maximum reflection losses of -40 dB and -60 dB, respectively, at a 2 mm thickness. These findings underscore the potential of 3D flower-like NiO and NiO/rGO composites for high-performance microwave absorption. [Display omitted]</description><subject>Electromagnetic parameters</subject><subject>Microflower</subject><subject>Microwave absorption</subject><subject>Reflection loss</subject><issn>2468-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQ9AEkqtI_4OAfSLvOy8kFCVVQkCp6gbPl2JvUFXWqdVrUv8dROPc0q52d0eww9iRgKUCUq8MynKl1fplCmsdVUQp5x2ZpXlYJpBk8sEUIBwAQlawLUcxYt8ULku6c73i4eqTOhcEZ7vyA1GqDIY780-249nbEFW12fI-R7cNAZzOcKd60PXH0e-0NWn50hvpffUGum9DTaXC9f2T3rf4JuPjHOft-e_1avyfb3eZj_bJNjACQiWlllqKtBNZVWum00bqAQkrIyiyX1kosY3rZZDZyNda6zQrblDLPBWgo8mzO8sk3RgiBsFUnckdNVyVAjR2pg5o6UmNHauooyp4nGcZsF4ekgnE4fuMIzaBs724b_AE6LXUk</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Rekha Phani, P․S․D․</creator><creator>Sahu, Somnath</creator><creator>Gurrala, Ravi Chandra</creator><creator>Dobbidi, Pamu</creator><creator>Raidongia, Kalyan</creator><creator>Latha, B․Swarna</creator><creator>Babu, B․Kishore</creator><creator>Annapurna, N․</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3201-2359</orcidid></search><sort><creationdate>20250101</creationdate><title>Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption</title><author>Rekha Phani, P․S․D․ ; Sahu, Somnath ; Gurrala, Ravi Chandra ; Dobbidi, Pamu ; Raidongia, Kalyan ; Latha, B․Swarna ; Babu, B․Kishore ; Annapurna, N․</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Electromagnetic parameters</topic><topic>Microflower</topic><topic>Microwave absorption</topic><topic>Reflection loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekha Phani, P․S․D․</creatorcontrib><creatorcontrib>Sahu, Somnath</creatorcontrib><creatorcontrib>Gurrala, Ravi Chandra</creatorcontrib><creatorcontrib>Dobbidi, Pamu</creatorcontrib><creatorcontrib>Raidongia, Kalyan</creatorcontrib><creatorcontrib>Latha, B․Swarna</creatorcontrib><creatorcontrib>Babu, B․Kishore</creatorcontrib><creatorcontrib>Annapurna, N․</creatorcontrib><collection>CrossRef</collection><jtitle>Surfaces and interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rekha Phani, P․S․D․</au><au>Sahu, Somnath</au><au>Gurrala, Ravi Chandra</au><au>Dobbidi, Pamu</au><au>Raidongia, Kalyan</au><au>Latha, B․Swarna</au><au>Babu, B․Kishore</au><au>Annapurna, N․</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption</atitle><jtitle>Surfaces and interfaces</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>56</volume><spage>105617</spage><pages>105617-</pages><artnum>105617</artnum><issn>2468-0230</issn><abstract>Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO composites are studied via a hydrothermal method, and their structural, microstructural, and electromagnetic properties are comprehensively examined. The XPS spectra indicated increased oxygen vacancies in the NiO/rGO composite, contributing to enhanced microwave absorption. Integrating rGO into NiO generated oxygen vacancies, offsetting charge imbalances and promoting interfacial and dipolar polarization. The conductive rGO network and the flower-like NiO morphology enhanced dielectric loss, as the unique structure provided a large surface area and effective impedance mismatch. Additionally, the folded and curled nanosheets extended the propagation paths of electromagnetic waves, enabling multiple reflections and greater attenuation. The NiO and NiO/rGO composites achieved maximum reflection losses of -40 dB and -60 dB, respectively, at a 2 mm thickness. These findings underscore the potential of 3D flower-like NiO and NiO/rGO composites for high-performance microwave absorption. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfin.2024.105617</doi><orcidid>https://orcid.org/0000-0003-3201-2359</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2468-0230
ispartof Surfaces and interfaces, 2025-01, Vol.56, p.105617, Article 105617
issn 2468-0230
language eng
recordid cdi_crossref_primary_10_1016_j_surfin_2024_105617
source ScienceDirect Journals
subjects Electromagnetic parameters
Microflower
Microwave absorption
Reflection loss
title Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20synergistic%20interfaces%20in%20NiO%20and%20NiO/rGO%20heterostructures%20for%20enhanced%20microwave%20absorption&rft.jtitle=Surfaces%20and%20interfaces&rft.au=Rekha%20Phani,%20P%E2%80%A4S%E2%80%A4D%E2%80%A4&rft.date=2025-01-01&rft.volume=56&rft.spage=105617&rft.pages=105617-&rft.artnum=105617&rft.issn=2468-0230&rft_id=info:doi/10.1016/j.surfin.2024.105617&rft_dat=%3Celsevier_cross%3ES2468023024017735%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true