Loading…
Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption
Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO...
Saved in:
Published in: | Surfaces and interfaces 2025-01, Vol.56, p.105617, Article 105617 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543 |
container_end_page | |
container_issue | |
container_start_page | 105617 |
container_title | Surfaces and interfaces |
container_volume | 56 |
creator | Rekha Phani, P․S․D․ Sahu, Somnath Gurrala, Ravi Chandra Dobbidi, Pamu Raidongia, Kalyan Latha, B․Swarna Babu, B․Kishore Annapurna, N․ |
description | Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO composites are studied via a hydrothermal method, and their structural, microstructural, and electromagnetic properties are comprehensively examined. The XPS spectra indicated increased oxygen vacancies in the NiO/rGO composite, contributing to enhanced microwave absorption. Integrating rGO into NiO generated oxygen vacancies, offsetting charge imbalances and promoting interfacial and dipolar polarization. The conductive rGO network and the flower-like NiO morphology enhanced dielectric loss, as the unique structure provided a large surface area and effective impedance mismatch. Additionally, the folded and curled nanosheets extended the propagation paths of electromagnetic waves, enabling multiple reflections and greater attenuation. The NiO and NiO/rGO composites achieved maximum reflection losses of -40 dB and -60 dB, respectively, at a 2 mm thickness. These findings underscore the potential of 3D flower-like NiO and NiO/rGO composites for high-performance microwave absorption.
[Display omitted] |
doi_str_mv | 10.1016/j.surfin.2024.105617 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_surfin_2024_105617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2468023024017735</els_id><sourcerecordid>S2468023024017735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543</originalsourceid><addsrcrecordid>eNp9UMtOwzAQ9AEkqtI_4OAfSLvOy8kFCVVQkCp6gbPl2JvUFXWqdVrUv8dROPc0q52d0eww9iRgKUCUq8MynKl1fplCmsdVUQp5x2ZpXlYJpBk8sEUIBwAQlawLUcxYt8ULku6c73i4eqTOhcEZ7vyA1GqDIY780-249nbEFW12fI-R7cNAZzOcKd60PXH0e-0NWn50hvpffUGum9DTaXC9f2T3rf4JuPjHOft-e_1avyfb3eZj_bJNjACQiWlllqKtBNZVWum00bqAQkrIyiyX1kosY3rZZDZyNda6zQrblDLPBWgo8mzO8sk3RgiBsFUnckdNVyVAjR2pg5o6UmNHauooyp4nGcZsF4ekgnE4fuMIzaBs724b_AE6LXUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption</title><source>ScienceDirect Journals</source><creator>Rekha Phani, P․S․D․ ; Sahu, Somnath ; Gurrala, Ravi Chandra ; Dobbidi, Pamu ; Raidongia, Kalyan ; Latha, B․Swarna ; Babu, B․Kishore ; Annapurna, N․</creator><creatorcontrib>Rekha Phani, P․S․D․ ; Sahu, Somnath ; Gurrala, Ravi Chandra ; Dobbidi, Pamu ; Raidongia, Kalyan ; Latha, B․Swarna ; Babu, B․Kishore ; Annapurna, N․</creatorcontrib><description>Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO composites are studied via a hydrothermal method, and their structural, microstructural, and electromagnetic properties are comprehensively examined. The XPS spectra indicated increased oxygen vacancies in the NiO/rGO composite, contributing to enhanced microwave absorption. Integrating rGO into NiO generated oxygen vacancies, offsetting charge imbalances and promoting interfacial and dipolar polarization. The conductive rGO network and the flower-like NiO morphology enhanced dielectric loss, as the unique structure provided a large surface area and effective impedance mismatch. Additionally, the folded and curled nanosheets extended the propagation paths of electromagnetic waves, enabling multiple reflections and greater attenuation. The NiO and NiO/rGO composites achieved maximum reflection losses of -40 dB and -60 dB, respectively, at a 2 mm thickness. These findings underscore the potential of 3D flower-like NiO and NiO/rGO composites for high-performance microwave absorption.
[Display omitted]</description><identifier>ISSN: 2468-0230</identifier><identifier>DOI: 10.1016/j.surfin.2024.105617</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electromagnetic parameters ; Microflower ; Microwave absorption ; Reflection loss</subject><ispartof>Surfaces and interfaces, 2025-01, Vol.56, p.105617, Article 105617</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543</cites><orcidid>0000-0003-3201-2359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rekha Phani, P․S․D․</creatorcontrib><creatorcontrib>Sahu, Somnath</creatorcontrib><creatorcontrib>Gurrala, Ravi Chandra</creatorcontrib><creatorcontrib>Dobbidi, Pamu</creatorcontrib><creatorcontrib>Raidongia, Kalyan</creatorcontrib><creatorcontrib>Latha, B․Swarna</creatorcontrib><creatorcontrib>Babu, B․Kishore</creatorcontrib><creatorcontrib>Annapurna, N․</creatorcontrib><title>Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption</title><title>Surfaces and interfaces</title><description>Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO composites are studied via a hydrothermal method, and their structural, microstructural, and electromagnetic properties are comprehensively examined. The XPS spectra indicated increased oxygen vacancies in the NiO/rGO composite, contributing to enhanced microwave absorption. Integrating rGO into NiO generated oxygen vacancies, offsetting charge imbalances and promoting interfacial and dipolar polarization. The conductive rGO network and the flower-like NiO morphology enhanced dielectric loss, as the unique structure provided a large surface area and effective impedance mismatch. Additionally, the folded and curled nanosheets extended the propagation paths of electromagnetic waves, enabling multiple reflections and greater attenuation. The NiO and NiO/rGO composites achieved maximum reflection losses of -40 dB and -60 dB, respectively, at a 2 mm thickness. These findings underscore the potential of 3D flower-like NiO and NiO/rGO composites for high-performance microwave absorption.
[Display omitted]</description><subject>Electromagnetic parameters</subject><subject>Microflower</subject><subject>Microwave absorption</subject><subject>Reflection loss</subject><issn>2468-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQ9AEkqtI_4OAfSLvOy8kFCVVQkCp6gbPl2JvUFXWqdVrUv8dROPc0q52d0eww9iRgKUCUq8MynKl1fplCmsdVUQp5x2ZpXlYJpBk8sEUIBwAQlawLUcxYt8ULku6c73i4eqTOhcEZ7vyA1GqDIY780-249nbEFW12fI-R7cNAZzOcKd60PXH0e-0NWn50hvpffUGum9DTaXC9f2T3rf4JuPjHOft-e_1avyfb3eZj_bJNjACQiWlllqKtBNZVWum00bqAQkrIyiyX1kosY3rZZDZyNda6zQrblDLPBWgo8mzO8sk3RgiBsFUnckdNVyVAjR2pg5o6UmNHauooyp4nGcZsF4ekgnE4fuMIzaBs724b_AE6LXUk</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Rekha Phani, P․S․D․</creator><creator>Sahu, Somnath</creator><creator>Gurrala, Ravi Chandra</creator><creator>Dobbidi, Pamu</creator><creator>Raidongia, Kalyan</creator><creator>Latha, B․Swarna</creator><creator>Babu, B․Kishore</creator><creator>Annapurna, N․</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3201-2359</orcidid></search><sort><creationdate>20250101</creationdate><title>Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption</title><author>Rekha Phani, P․S․D․ ; Sahu, Somnath ; Gurrala, Ravi Chandra ; Dobbidi, Pamu ; Raidongia, Kalyan ; Latha, B․Swarna ; Babu, B․Kishore ; Annapurna, N․</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Electromagnetic parameters</topic><topic>Microflower</topic><topic>Microwave absorption</topic><topic>Reflection loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekha Phani, P․S․D․</creatorcontrib><creatorcontrib>Sahu, Somnath</creatorcontrib><creatorcontrib>Gurrala, Ravi Chandra</creatorcontrib><creatorcontrib>Dobbidi, Pamu</creatorcontrib><creatorcontrib>Raidongia, Kalyan</creatorcontrib><creatorcontrib>Latha, B․Swarna</creatorcontrib><creatorcontrib>Babu, B․Kishore</creatorcontrib><creatorcontrib>Annapurna, N․</creatorcontrib><collection>CrossRef</collection><jtitle>Surfaces and interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rekha Phani, P․S․D․</au><au>Sahu, Somnath</au><au>Gurrala, Ravi Chandra</au><au>Dobbidi, Pamu</au><au>Raidongia, Kalyan</au><au>Latha, B․Swarna</au><au>Babu, B․Kishore</au><au>Annapurna, N․</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption</atitle><jtitle>Surfaces and interfaces</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>56</volume><spage>105617</spage><pages>105617-</pages><artnum>105617</artnum><issn>2468-0230</issn><abstract>Materials engineered for electromagnetic wave absorption are essential in military, aerospace, and electronics applications. Optimizing morphology has proven effective in enhancing microwave attenuation by utilizing interfacial polarization. In this study, hierarchical 3D flower-like NiO and NiO/rGO composites are studied via a hydrothermal method, and their structural, microstructural, and electromagnetic properties are comprehensively examined. The XPS spectra indicated increased oxygen vacancies in the NiO/rGO composite, contributing to enhanced microwave absorption. Integrating rGO into NiO generated oxygen vacancies, offsetting charge imbalances and promoting interfacial and dipolar polarization. The conductive rGO network and the flower-like NiO morphology enhanced dielectric loss, as the unique structure provided a large surface area and effective impedance mismatch. Additionally, the folded and curled nanosheets extended the propagation paths of electromagnetic waves, enabling multiple reflections and greater attenuation. The NiO and NiO/rGO composites achieved maximum reflection losses of -40 dB and -60 dB, respectively, at a 2 mm thickness. These findings underscore the potential of 3D flower-like NiO and NiO/rGO composites for high-performance microwave absorption.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfin.2024.105617</doi><orcidid>https://orcid.org/0000-0003-3201-2359</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2468-0230 |
ispartof | Surfaces and interfaces, 2025-01, Vol.56, p.105617, Article 105617 |
issn | 2468-0230 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_surfin_2024_105617 |
source | ScienceDirect Journals |
subjects | Electromagnetic parameters Microflower Microwave absorption Reflection loss |
title | Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20synergistic%20interfaces%20in%20NiO%20and%20NiO/rGO%20heterostructures%20for%20enhanced%20microwave%20absorption&rft.jtitle=Surfaces%20and%20interfaces&rft.au=Rekha%20Phani,%20P%E2%80%A4S%E2%80%A4D%E2%80%A4&rft.date=2025-01-01&rft.volume=56&rft.spage=105617&rft.pages=105617-&rft.artnum=105617&rft.issn=2468-0230&rft_id=info:doi/10.1016/j.surfin.2024.105617&rft_dat=%3Celsevier_cross%3ES2468023024017735%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1007-cf732ed81e9828a2baa50577036347dd7e60007b3da2b9e9af35db674410a0543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |