Loading…

Green Silica: Industrially scalable & sustainable approach towards achieving improved “nano filler – Elastomer” interaction and reinforcement in tire tread compounds

In recent times carbon black is getting part replaced in the tire industry by silica as the major reinforcing filler for the development of “greener tires”. The green claim comes from the fact that silica reinforcement helps in further fuel saving in vehicles and reduction in CO2 emission into the e...

Full description

Saved in:
Bibliographic Details
Published in:Sustainable Materials and Technologies 2020-12, Vol.26, p.e00232, Article e00232
Main Authors: Lolage, Mayura, Parida, Prabhat, Chaskar, Manohar, Gupta, Amit, Rautaray, Debabrata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent times carbon black is getting part replaced in the tire industry by silica as the major reinforcing filler for the development of “greener tires”. The green claim comes from the fact that silica reinforcement helps in further fuel saving in vehicles and reduction in CO2 emission into the environment. Making the green claim further, researchers are also looking at reinforcement fillers that are synthesized from bio-waste as raw materials. In this paper we have evaluated the effect of replacing carbon black with highly dispersible silica derived from an agro based by-product such as rice husk ash in a basic tire tread formulation of passenger car tires. Our approach has been to first develop an economical & scalable process for extracting silicate from rice husk ash in the form of sodium silicate followed by synthesizing tire grade functionalized highly dispersible silica that have greater dispersibility in the tire rubber matrix and thereby achieve similar or better physical properties for the tire rubber with potential of reduced rolling resistance of tires.
ISSN:2214-9937
2214-9937
DOI:10.1016/j.susmat.2020.e00232