Loading…

Fe-MOF induced biopolymer-based sustainable self-cleaning membranes for effective selective separation and wastewater treatment

Recently, there is an outgrowing attention for biopolymer based thin film composite (TFC) membranes attributed to its sustainable factors. However, biopolymers show high fouling propensity thus, membrane fouling and the limited recyclability have always been the most severe problem during long-term...

Full description

Saved in:
Bibliographic Details
Published in:Sustainable Materials and Technologies 2023-04, Vol.35, p.e00537, Article e00537
Main Authors: Maraddi, Ashok, Halakarni, Mahaveer, Manohara Halanur, M., Nataraj, S.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, there is an outgrowing attention for biopolymer based thin film composite (TFC) membranes attributed to its sustainable factors. However, biopolymers show high fouling propensity thus, membrane fouling and the limited recyclability have always been the most severe problem during long-term use confining the industrial applications. Thus, the objectives of the study is to develop an anti-fouling membrane for increased shelf life with self-cleaning ability for successful regeneration of a membrane surface by the assistance of multifunctional nanocomposites. In this strategy, an iron-based metal organic framework (Fe-MOF) incorporated crosslinked chitosan-based loose nanofiltration membrane for selective filtration of solute and various wastewater treatment were developed. The structural functionality and stability of the thin-film composite (TFC) membranes was examined using ATR-IR and FE-SEM characterization and further surface charges were determined by zeta potential measurements. When the membrane's performance was examined for various feed streams under varied testing settings, it was discovered that the optimized membrane had a dye rejection rate of >85% (both cationic and anionic), and 
ISSN:2214-9937
2214-9937
DOI:10.1016/j.susmat.2022.e00537