Loading…
Small molecule host system for solution-processed red phosphorescent OLEDs
We demonstrate high efficiency solution-processed red phosphorescent OLEDs with small molecule mixed host systems. 2-TNATA (4,4′,4″-tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine):TPBI (2,2′,2″-(1,3,5-phenylene)tris(1-phenyl-1H-benzimidazole)) and m-MTDATA (4,4′,4″-tri-(N-3-methylphenyl-N-phenyla...
Saved in:
Published in: | Synthetic metals 2010-04, Vol.160 (7), p.631-635 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate high efficiency solution-processed red phosphorescent OLEDs with small molecule mixed host systems. 2-TNATA (4,4′,4″-tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine):TPBI (2,2′,2″-(1,3,5-phenylene)tris(1-phenyl-1H-benzimidazole)) and m-MTDATA (4,4′,4″-tri-(N-3-methylphenyl-N-phenylamino)triphenylamine):TPBI host systems are reported as good soluble mixed host systems. A doping level of 3% bis(2-phenylquinoline)(acetylacetonate)iridium (Ir(phq)
2acac) dopant in the 2-TNATA:TPBI (1:1 ratio) mixed host produces the best quantum efficiency and driving voltage. This fabricated red phosphorescent OLED has a driving voltage of 5.2
V and maximum current and power efficiencies of 17.8
cd/A and 11.3
lm/W, respectively. Minimal electron or hole trapping in the phosphorescent dopant molecules and prevention of self quenching by the low doping technique appear to be the key reasons for good device performance. |
---|---|
ISSN: | 0379-6779 1879-3290 |
DOI: | 10.1016/j.synthmet.2009.12.020 |