Loading…
Comprehensible and dependable self-learning self-adaptive systems
Self-adaptivity enables flexible solutions in dynamically changing environments. However, due to the increasing complexity, uncertainty, and topology changes in cyber-physical systems (CPS), static adaptation mechanisms are insufficient as they do not always achieve appropriate effects. Furthermore,...
Saved in:
Published in: | Journal of systems architecture 2018-05, Vol.85-86, p.28-42 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Self-adaptivity enables flexible solutions in dynamically changing environments. However, due to the increasing complexity, uncertainty, and topology changes in cyber-physical systems (CPS), static adaptation mechanisms are insufficient as they do not always achieve appropriate effects. Furthermore, CPS are used in safety-critical domains, which requires them and their autonomous adaptations to be dependable. To overcome these problems, we extend the MAPE-K feedback loop architecture by imposing a structure and requirements on the knowledge base and by introducing a meta-adaptation layer. This enables us to continuously evaluate the accuracy of previous adaptations, learn new adaptation rules based on executable run-time models, and verify the correctness of the adaptation logic in the current system context. We demonstrate the effectiveness of our approach using a temperature control system. With our framework, we enable the design of comprehensible and dependable dynamically evolving adaptation logics. |
---|---|
ISSN: | 1383-7621 1873-6165 |
DOI: | 10.1016/j.sysarc.2018.03.004 |