Loading…

Architectural design of a Safe Mission Manager for Unmanned Aircraft Systems

Civil Aviation Authorities are elaborating a new regulatory framework for the safe operation of Unmanned Aircraft Systems (UAS). Current proposals are based on the analysis of the specific risks of the operation as well as on the definition of some risk mitigation measures. In order to achieve the t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of systems architecture 2018-10, Vol.90, p.94-108
Main Authors: Usach, Hector, Vila, Juan A., Torens, Christoph, Adolf, Florian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Civil Aviation Authorities are elaborating a new regulatory framework for the safe operation of Unmanned Aircraft Systems (UAS). Current proposals are based on the analysis of the specific risks of the operation as well as on the definition of some risk mitigation measures. In order to achieve the target level of safety, we propose increasing the level of automation by providing the on-board system with Automated Contingency Management functions. The aim of the resulting Safe Mission Manager System is to autonomously adapt to contingency events while still achieving mission objectives through the degradation of mission performance. In this paper, we discuss some of the architectural issues in designing this system. The resulting architecture makes a conceptual differentiation between event monitoring, decision-making on a policy for dealing with contingencies and the execution of the corresponding policy. We also discuss how to allocate the different Safe Mission Manager components to a partitioned, Integrated Modular Avionics architecture. Finally, determinism and predictability are key aspects in contingency management due to their overall impact on safety. For this reason, we model and verify the correctness of a contingency management policy using formal methods.
ISSN:1383-7621
1873-6165
DOI:10.1016/j.sysarc.2018.09.003