Loading…

Non-fragile positive real control for uncertain linear neutral delay systems

This paper is concerned with the problem of non-fragile positive real control for uncertain neutral delay systems with time-invariant norm-bounded parameter uncertainty. Time delays are assumed to appear in both the state and the controlled output equations. The state feedback gains are with norm-bo...

Full description

Saved in:
Bibliographic Details
Published in:Systems & control letters 2004-05, Vol.52 (1), p.59-74
Main Authors: Xu, Shengyuan, Lam, James, Wang, Jianliang, Yang, Guang-Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is concerned with the problem of non-fragile positive real control for uncertain neutral delay systems with time-invariant norm-bounded parameter uncertainty. Time delays are assumed to appear in both the state and the controlled output equations. The state feedback gains are with norm-bounded controller uncertainties. For both the cases with additive and multiplicative controller uncertainties, we address the problem of designing memoryless state feedback controllers such that, for all admissible uncertainties, the resulting closed-loop system is stable and the closed-loop transfer function is extended strictly positive real. Sufficient conditions for the existence of desired controllers are given in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, the expected memoryless state feedback controller can be easily constructed via convex optimization. An illustrative example is given to demonstrate the validity and applicability of the proposed approach.
ISSN:0167-6911
1872-7956
DOI:10.1016/j.sysconle.2003.11.001