Loading…
Explicit solution of min–max MPC with additive uncertainties and quadratic criterion
Min–max model predictive control (MMMPC) is one of the strategies proposed to control plants subject to bounded uncertainties. This technique is very difficult to implement in real time because of the computation time required. Recently, the piecewise affine nature of this control law has been prove...
Saved in:
Published in: | Systems & control letters 2006-04, Vol.55 (4), p.266-274 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Min–max model predictive control (MMMPC) is one of the strategies proposed to control plants subject to bounded uncertainties. This technique is very difficult to implement in real time because of the computation time required. Recently, the piecewise affine nature of this control law has been proved for unconstrained linear systems with quadratic performance criterion. However, no algorithm to compute the explicit form of the control law was given. This paper shows how to obtain this explicit form by means of a constructive algorithm. An approximation to MMMPC in the presence of constraints is presented based on this algorithm. |
---|---|
ISSN: | 0167-6911 1872-7956 |
DOI: | 10.1016/j.sysconle.2005.08.006 |