Loading…

Determining causality in travel mode choice

•A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling. This a...

Full description

Saved in:
Bibliographic Details
Published in:Travel, behaviour & society behaviour & society, 2024-07, Vol.36, p.100789, Article 100789
Main Authors: Chauhan, Rishabh Singh, Riis, Christoffer, Adhikari, Shishir, Derrible, Sybil, Zheleva, Elena, Choudhury, Charisma F., Pereira, Francisco Câmara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623
container_end_page
container_issue
container_start_page 100789
container_title Travel, behaviour & society
container_volume 36
creator Chauhan, Rishabh Singh
Riis, Christoffer
Adhikari, Shishir
Derrible, Sybil
Zheleva, Elena
Choudhury, Charisma F.
Pereira, Francisco Câmara
description •A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling. This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area.
doi_str_mv 10.1016/j.tbs.2024.100789
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_tbs_2024_100789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214367X24000528</els_id><sourcerecordid>S2214367X24000528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhbNQcBjnB7jrXjrm3QZXMj5hwI2Cu5De3GpKH5LEgfn3dqhrV5dz4Tucj5ArRreMMn3TbXOTtpxyOWda1eaMrDhnshS6-rggm5Q6SikTkiqpV-T6HjPGIYxh_CzA_STXh3wswljk6A7YF8PksYCvKQBekvPW9Qk3f3dN3h8f3nbP5f716WV3ty-BG55LT52WktWuliigAtq0RgrtOLauNsBVzaXxvqmMkUopxnSrtPPN_BYSNBdrwpZeiFNKEVv7HcPg4tEyak-StrOzpD1J2kVyZm4XBudhh4DRJgg4AvoQEbL1U_iH_gURU1qu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determining causality in travel mode choice</title><source>ScienceDirect Journals</source><creator>Chauhan, Rishabh Singh ; Riis, Christoffer ; Adhikari, Shishir ; Derrible, Sybil ; Zheleva, Elena ; Choudhury, Charisma F. ; Pereira, Francisco Câmara</creator><creatorcontrib>Chauhan, Rishabh Singh ; Riis, Christoffer ; Adhikari, Shishir ; Derrible, Sybil ; Zheleva, Elena ; Choudhury, Charisma F. ; Pereira, Francisco Câmara</creatorcontrib><description>•A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling. This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area.</description><identifier>ISSN: 2214-367X</identifier><identifier>DOI: 10.1016/j.tbs.2024.100789</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Activity based models ; Causality ; Travel behavior ; Travel mode choice models</subject><ispartof>Travel, behaviour &amp; society, 2024-07, Vol.36, p.100789, Article 100789</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chauhan, Rishabh Singh</creatorcontrib><creatorcontrib>Riis, Christoffer</creatorcontrib><creatorcontrib>Adhikari, Shishir</creatorcontrib><creatorcontrib>Derrible, Sybil</creatorcontrib><creatorcontrib>Zheleva, Elena</creatorcontrib><creatorcontrib>Choudhury, Charisma F.</creatorcontrib><creatorcontrib>Pereira, Francisco Câmara</creatorcontrib><title>Determining causality in travel mode choice</title><title>Travel, behaviour &amp; society</title><description>•A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling. This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area.</description><subject>Activity based models</subject><subject>Causality</subject><subject>Travel behavior</subject><subject>Travel mode choice models</subject><issn>2214-367X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhbNQcBjnB7jrXjrm3QZXMj5hwI2Cu5De3GpKH5LEgfn3dqhrV5dz4Tucj5ArRreMMn3TbXOTtpxyOWda1eaMrDhnshS6-rggm5Q6SikTkiqpV-T6HjPGIYxh_CzA_STXh3wswljk6A7YF8PksYCvKQBekvPW9Qk3f3dN3h8f3nbP5f716WV3ty-BG55LT52WktWuliigAtq0RgrtOLauNsBVzaXxvqmMkUopxnSrtPPN_BYSNBdrwpZeiFNKEVv7HcPg4tEyak-StrOzpD1J2kVyZm4XBudhh4DRJgg4AvoQEbL1U_iH_gURU1qu</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Chauhan, Rishabh Singh</creator><creator>Riis, Christoffer</creator><creator>Adhikari, Shishir</creator><creator>Derrible, Sybil</creator><creator>Zheleva, Elena</creator><creator>Choudhury, Charisma F.</creator><creator>Pereira, Francisco Câmara</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202407</creationdate><title>Determining causality in travel mode choice</title><author>Chauhan, Rishabh Singh ; Riis, Christoffer ; Adhikari, Shishir ; Derrible, Sybil ; Zheleva, Elena ; Choudhury, Charisma F. ; Pereira, Francisco Câmara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity based models</topic><topic>Causality</topic><topic>Travel behavior</topic><topic>Travel mode choice models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Rishabh Singh</creatorcontrib><creatorcontrib>Riis, Christoffer</creatorcontrib><creatorcontrib>Adhikari, Shishir</creatorcontrib><creatorcontrib>Derrible, Sybil</creatorcontrib><creatorcontrib>Zheleva, Elena</creatorcontrib><creatorcontrib>Choudhury, Charisma F.</creatorcontrib><creatorcontrib>Pereira, Francisco Câmara</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Travel, behaviour &amp; society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Rishabh Singh</au><au>Riis, Christoffer</au><au>Adhikari, Shishir</au><au>Derrible, Sybil</au><au>Zheleva, Elena</au><au>Choudhury, Charisma F.</au><au>Pereira, Francisco Câmara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining causality in travel mode choice</atitle><jtitle>Travel, behaviour &amp; society</jtitle><date>2024-07</date><risdate>2024</risdate><volume>36</volume><spage>100789</spage><pages>100789-</pages><artnum>100789</artnum><issn>2214-367X</issn><abstract>•A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling. This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tbs.2024.100789</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-367X
ispartof Travel, behaviour & society, 2024-07, Vol.36, p.100789, Article 100789
issn 2214-367X
language eng
recordid cdi_crossref_primary_10_1016_j_tbs_2024_100789
source ScienceDirect Journals
subjects Activity based models
Causality
Travel behavior
Travel mode choice models
title Determining causality in travel mode choice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20causality%20in%20travel%20mode%20choice&rft.jtitle=Travel,%20behaviour%20&%20society&rft.au=Chauhan,%20Rishabh%20Singh&rft.date=2024-07&rft.volume=36&rft.spage=100789&rft.pages=100789-&rft.artnum=100789&rft.issn=2214-367X&rft_id=info:doi/10.1016/j.tbs.2024.100789&rft_dat=%3Celsevier_cross%3ES2214367X24000528%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true