Loading…
Determining causality in travel mode choice
•A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling. This a...
Saved in:
Published in: | Travel, behaviour & society behaviour & society, 2024-07, Vol.36, p.100789, Article 100789 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623 |
container_end_page | |
container_issue | |
container_start_page | 100789 |
container_title | Travel, behaviour & society |
container_volume | 36 |
creator | Chauhan, Rishabh Singh Riis, Christoffer Adhikari, Shishir Derrible, Sybil Zheleva, Elena Choudhury, Charisma F. Pereira, Francisco Câmara |
description | •A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling.
This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area. |
doi_str_mv | 10.1016/j.tbs.2024.100789 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_tbs_2024_100789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214367X24000528</els_id><sourcerecordid>S2214367X24000528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhbNQcBjnB7jrXjrm3QZXMj5hwI2Cu5De3GpKH5LEgfn3dqhrV5dz4Tucj5ArRreMMn3TbXOTtpxyOWda1eaMrDhnshS6-rggm5Q6SikTkiqpV-T6HjPGIYxh_CzA_STXh3wswljk6A7YF8PksYCvKQBekvPW9Qk3f3dN3h8f3nbP5f716WV3ty-BG55LT52WktWuliigAtq0RgrtOLauNsBVzaXxvqmMkUopxnSrtPPN_BYSNBdrwpZeiFNKEVv7HcPg4tEyak-StrOzpD1J2kVyZm4XBudhh4DRJgg4AvoQEbL1U_iH_gURU1qu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determining causality in travel mode choice</title><source>ScienceDirect Journals</source><creator>Chauhan, Rishabh Singh ; Riis, Christoffer ; Adhikari, Shishir ; Derrible, Sybil ; Zheleva, Elena ; Choudhury, Charisma F. ; Pereira, Francisco Câmara</creator><creatorcontrib>Chauhan, Rishabh Singh ; Riis, Christoffer ; Adhikari, Shishir ; Derrible, Sybil ; Zheleva, Elena ; Choudhury, Charisma F. ; Pereira, Francisco Câmara</creatorcontrib><description>•A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling.
This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area.</description><identifier>ISSN: 2214-367X</identifier><identifier>DOI: 10.1016/j.tbs.2024.100789</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Activity based models ; Causality ; Travel behavior ; Travel mode choice models</subject><ispartof>Travel, behaviour & society, 2024-07, Vol.36, p.100789, Article 100789</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chauhan, Rishabh Singh</creatorcontrib><creatorcontrib>Riis, Christoffer</creatorcontrib><creatorcontrib>Adhikari, Shishir</creatorcontrib><creatorcontrib>Derrible, Sybil</creatorcontrib><creatorcontrib>Zheleva, Elena</creatorcontrib><creatorcontrib>Choudhury, Charisma F.</creatorcontrib><creatorcontrib>Pereira, Francisco Câmara</creatorcontrib><title>Determining causality in travel mode choice</title><title>Travel, behaviour & society</title><description>•A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling.
This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area.</description><subject>Activity based models</subject><subject>Causality</subject><subject>Travel behavior</subject><subject>Travel mode choice models</subject><issn>2214-367X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhbNQcBjnB7jrXjrm3QZXMj5hwI2Cu5De3GpKH5LEgfn3dqhrV5dz4Tucj5ArRreMMn3TbXOTtpxyOWda1eaMrDhnshS6-rggm5Q6SikTkiqpV-T6HjPGIYxh_CzA_STXh3wswljk6A7YF8PksYCvKQBekvPW9Qk3f3dN3h8f3nbP5f716WV3ty-BG55LT52WktWuliigAtq0RgrtOLauNsBVzaXxvqmMkUopxnSrtPPN_BYSNBdrwpZeiFNKEVv7HcPg4tEyak-StrOzpD1J2kVyZm4XBudhh4DRJgg4AvoQEbL1U_iH_gURU1qu</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Chauhan, Rishabh Singh</creator><creator>Riis, Christoffer</creator><creator>Adhikari, Shishir</creator><creator>Derrible, Sybil</creator><creator>Zheleva, Elena</creator><creator>Choudhury, Charisma F.</creator><creator>Pereira, Francisco Câmara</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202407</creationdate><title>Determining causality in travel mode choice</title><author>Chauhan, Rishabh Singh ; Riis, Christoffer ; Adhikari, Shishir ; Derrible, Sybil ; Zheleva, Elena ; Choudhury, Charisma F. ; Pereira, Francisco Câmara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity based models</topic><topic>Causality</topic><topic>Travel behavior</topic><topic>Travel mode choice models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Rishabh Singh</creatorcontrib><creatorcontrib>Riis, Christoffer</creatorcontrib><creatorcontrib>Adhikari, Shishir</creatorcontrib><creatorcontrib>Derrible, Sybil</creatorcontrib><creatorcontrib>Zheleva, Elena</creatorcontrib><creatorcontrib>Choudhury, Charisma F.</creatorcontrib><creatorcontrib>Pereira, Francisco Câmara</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Travel, behaviour & society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Rishabh Singh</au><au>Riis, Christoffer</au><au>Adhikari, Shishir</au><au>Derrible, Sybil</au><au>Zheleva, Elena</au><au>Choudhury, Charisma F.</au><au>Pereira, Francisco Câmara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining causality in travel mode choice</atitle><jtitle>Travel, behaviour & society</jtitle><date>2024-07</date><risdate>2024</risdate><volume>36</volume><spage>100789</spage><pages>100789-</pages><artnum>100789</artnum><issn>2214-367X</issn><abstract>•A novel methodology is proposed to understand causality in travel mode choice.•Causal discovery algorithms are combined with Structural Equation Modeling.•Four causal discovery algorithms are tested on survey data.•This study is a major advancement to the existing correlation-based modeling.
This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tbs.2024.100789</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-367X |
ispartof | Travel, behaviour & society, 2024-07, Vol.36, p.100789, Article 100789 |
issn | 2214-367X |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_tbs_2024_100789 |
source | ScienceDirect Journals |
subjects | Activity based models Causality Travel behavior Travel mode choice models |
title | Determining causality in travel mode choice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20causality%20in%20travel%20mode%20choice&rft.jtitle=Travel,%20behaviour%20&%20society&rft.au=Chauhan,%20Rishabh%20Singh&rft.date=2024-07&rft.volume=36&rft.spage=100789&rft.pages=100789-&rft.artnum=100789&rft.issn=2214-367X&rft_id=info:doi/10.1016/j.tbs.2024.100789&rft_dat=%3Celsevier_cross%3ES2214367X24000528%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-d0a64418a84e3c7c0bf9436a2efa89c258249ddb7994555116f56adb82434c623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |