Loading…

Interdisciplinary research unlocking innovative solutions in healthcare

Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing. Nevertheless, the flow of data about the health status of a patient brings a variety of technical, leg...

Full description

Saved in:
Bibliographic Details
Published in:Technovation 2023-02, Vol.120, p.102511, Article 102511
Main Authors: Lepore, Dominique, Dolui, Koustabh, Tomashchuk, Oleksandr, Shim, Heereen, Puri, Chetanya, Li, Yuan, Chen, Nuoya, Spigarelli, Francesca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493
cites cdi_FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493
container_end_page
container_issue
container_start_page 102511
container_title Technovation
container_volume 120
creator Lepore, Dominique
Dolui, Koustabh
Tomashchuk, Oleksandr
Shim, Heereen
Puri, Chetanya
Li, Yuan
Chen, Nuoya
Spigarelli, Francesca
description Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing. Nevertheless, the flow of data about the health status of a patient brings a variety of technical, legal and economic challenges that need to be addressed through an interdisciplinary approach. In this context, based on the action research methodology, the paper introduces an exemplary health-related activity recognition platform based on IoT, developed as a part of European-funded project Horizon 2020 in collaboration with academia and industry. The platform proposes innovative solutions on how personal healthcare data can be processed and analysed, protecting users’ privacy. The main strength of the platform is the interdisciplinary approach used within a triple-helix model, involving a variety of institutions, companies and researchers from different academic fields. In this perspective, the paper shows the potential that the integration of IoT and ML models have to offer and the main challenges that still need to be addressed. •Healthcare 4.0 is revolutionizing the way personal health is managed.•Technical, economic and legal barriers limit the adoption of innovative solutions.•The design of innovative solutions calls for interdisciplinary research.•Interdisciplinary research can be boosted in a triple-helix model.•The design of an IoT health-related activity recognition platform is presented.
doi_str_mv 10.1016/j.technovation.2022.102511
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_technovation_2022_102511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016649722200058X</els_id><sourcerecordid>S016649722200058X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493</originalsourceid><addsrcrecordid>eNqNkEFPwzAMhSMEEmPwHyruHYmTpQ03NGBMmsQFzlGWOjSjpFPSVeLfk6kcOHKyZPs9P3-E3DK6YJTJu_1iQNuGfjSD78MCKEAewJKxMzJjdaVK4DU_J7O8LEuhKrgkVyntKaUKBJ2R9SYMGBufrD90Ppj4XURMaKJti2Poevvpw0fhw3RixCL13fF0K-Vm0aLphtaaiNfkwpku4c1vnZP356e31Uu5fV1vVg_b0vJKDqWQEpnkyjrnjLVQIbIdyspRECgFoFFcCYdW8CXI3XJXY-OAgXSK10YoPif3k6-NfUoRnT5E_5Vja0b1CYne679I9AmJnpBk8eMkxpxw9Bh1fhuDxcZHtINuev8fmx-pbXPX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interdisciplinary research unlocking innovative solutions in healthcare</title><source>ScienceDirect Freedom Collection</source><creator>Lepore, Dominique ; Dolui, Koustabh ; Tomashchuk, Oleksandr ; Shim, Heereen ; Puri, Chetanya ; Li, Yuan ; Chen, Nuoya ; Spigarelli, Francesca</creator><creatorcontrib>Lepore, Dominique ; Dolui, Koustabh ; Tomashchuk, Oleksandr ; Shim, Heereen ; Puri, Chetanya ; Li, Yuan ; Chen, Nuoya ; Spigarelli, Francesca</creatorcontrib><description>Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing. Nevertheless, the flow of data about the health status of a patient brings a variety of technical, legal and economic challenges that need to be addressed through an interdisciplinary approach. In this context, based on the action research methodology, the paper introduces an exemplary health-related activity recognition platform based on IoT, developed as a part of European-funded project Horizon 2020 in collaboration with academia and industry. The platform proposes innovative solutions on how personal healthcare data can be processed and analysed, protecting users’ privacy. The main strength of the platform is the interdisciplinary approach used within a triple-helix model, involving a variety of institutions, companies and researchers from different academic fields. In this perspective, the paper shows the potential that the integration of IoT and ML models have to offer and the main challenges that still need to be addressed. •Healthcare 4.0 is revolutionizing the way personal health is managed.•Technical, economic and legal barriers limit the adoption of innovative solutions.•The design of innovative solutions calls for interdisciplinary research.•Interdisciplinary research can be boosted in a triple-helix model.•The design of an IoT health-related activity recognition platform is presented.</description><identifier>ISSN: 0166-4972</identifier><identifier>EISSN: 1879-2383</identifier><identifier>DOI: 10.1016/j.technovation.2022.102511</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>China ; Europe ; IoT ; Machine learning ; Triple helix</subject><ispartof>Technovation, 2023-02, Vol.120, p.102511, Article 102511</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493</citedby><cites>FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493</cites><orcidid>0000-0002-0612-7059 ; 0000-0001-5445-9667 ; 0000-0002-7618-4948 ; 0000-0003-3761-2310 ; 0000-0002-3474-4898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lepore, Dominique</creatorcontrib><creatorcontrib>Dolui, Koustabh</creatorcontrib><creatorcontrib>Tomashchuk, Oleksandr</creatorcontrib><creatorcontrib>Shim, Heereen</creatorcontrib><creatorcontrib>Puri, Chetanya</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Chen, Nuoya</creatorcontrib><creatorcontrib>Spigarelli, Francesca</creatorcontrib><title>Interdisciplinary research unlocking innovative solutions in healthcare</title><title>Technovation</title><description>Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing. Nevertheless, the flow of data about the health status of a patient brings a variety of technical, legal and economic challenges that need to be addressed through an interdisciplinary approach. In this context, based on the action research methodology, the paper introduces an exemplary health-related activity recognition platform based on IoT, developed as a part of European-funded project Horizon 2020 in collaboration with academia and industry. The platform proposes innovative solutions on how personal healthcare data can be processed and analysed, protecting users’ privacy. The main strength of the platform is the interdisciplinary approach used within a triple-helix model, involving a variety of institutions, companies and researchers from different academic fields. In this perspective, the paper shows the potential that the integration of IoT and ML models have to offer and the main challenges that still need to be addressed. •Healthcare 4.0 is revolutionizing the way personal health is managed.•Technical, economic and legal barriers limit the adoption of innovative solutions.•The design of innovative solutions calls for interdisciplinary research.•Interdisciplinary research can be boosted in a triple-helix model.•The design of an IoT health-related activity recognition platform is presented.</description><subject>China</subject><subject>Europe</subject><subject>IoT</subject><subject>Machine learning</subject><subject>Triple helix</subject><issn>0166-4972</issn><issn>1879-2383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkEFPwzAMhSMEEmPwHyruHYmTpQ03NGBMmsQFzlGWOjSjpFPSVeLfk6kcOHKyZPs9P3-E3DK6YJTJu_1iQNuGfjSD78MCKEAewJKxMzJjdaVK4DU_J7O8LEuhKrgkVyntKaUKBJ2R9SYMGBufrD90Ppj4XURMaKJti2Poevvpw0fhw3RixCL13fF0K-Vm0aLphtaaiNfkwpku4c1vnZP356e31Uu5fV1vVg_b0vJKDqWQEpnkyjrnjLVQIbIdyspRECgFoFFcCYdW8CXI3XJXY-OAgXSK10YoPif3k6-NfUoRnT5E_5Vja0b1CYne679I9AmJnpBk8eMkxpxw9Bh1fhuDxcZHtINuev8fmx-pbXPX</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Lepore, Dominique</creator><creator>Dolui, Koustabh</creator><creator>Tomashchuk, Oleksandr</creator><creator>Shim, Heereen</creator><creator>Puri, Chetanya</creator><creator>Li, Yuan</creator><creator>Chen, Nuoya</creator><creator>Spigarelli, Francesca</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0612-7059</orcidid><orcidid>https://orcid.org/0000-0001-5445-9667</orcidid><orcidid>https://orcid.org/0000-0002-7618-4948</orcidid><orcidid>https://orcid.org/0000-0003-3761-2310</orcidid><orcidid>https://orcid.org/0000-0002-3474-4898</orcidid></search><sort><creationdate>202302</creationdate><title>Interdisciplinary research unlocking innovative solutions in healthcare</title><author>Lepore, Dominique ; Dolui, Koustabh ; Tomashchuk, Oleksandr ; Shim, Heereen ; Puri, Chetanya ; Li, Yuan ; Chen, Nuoya ; Spigarelli, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>China</topic><topic>Europe</topic><topic>IoT</topic><topic>Machine learning</topic><topic>Triple helix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepore, Dominique</creatorcontrib><creatorcontrib>Dolui, Koustabh</creatorcontrib><creatorcontrib>Tomashchuk, Oleksandr</creatorcontrib><creatorcontrib>Shim, Heereen</creatorcontrib><creatorcontrib>Puri, Chetanya</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Chen, Nuoya</creatorcontrib><creatorcontrib>Spigarelli, Francesca</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Technovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepore, Dominique</au><au>Dolui, Koustabh</au><au>Tomashchuk, Oleksandr</au><au>Shim, Heereen</au><au>Puri, Chetanya</au><au>Li, Yuan</au><au>Chen, Nuoya</au><au>Spigarelli, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdisciplinary research unlocking innovative solutions in healthcare</atitle><jtitle>Technovation</jtitle><date>2023-02</date><risdate>2023</risdate><volume>120</volume><spage>102511</spage><pages>102511-</pages><artnum>102511</artnum><issn>0166-4972</issn><eissn>1879-2383</eissn><abstract>Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing. Nevertheless, the flow of data about the health status of a patient brings a variety of technical, legal and economic challenges that need to be addressed through an interdisciplinary approach. In this context, based on the action research methodology, the paper introduces an exemplary health-related activity recognition platform based on IoT, developed as a part of European-funded project Horizon 2020 in collaboration with academia and industry. The platform proposes innovative solutions on how personal healthcare data can be processed and analysed, protecting users’ privacy. The main strength of the platform is the interdisciplinary approach used within a triple-helix model, involving a variety of institutions, companies and researchers from different academic fields. In this perspective, the paper shows the potential that the integration of IoT and ML models have to offer and the main challenges that still need to be addressed. •Healthcare 4.0 is revolutionizing the way personal health is managed.•Technical, economic and legal barriers limit the adoption of innovative solutions.•The design of innovative solutions calls for interdisciplinary research.•Interdisciplinary research can be boosted in a triple-helix model.•The design of an IoT health-related activity recognition platform is presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.technovation.2022.102511</doi><orcidid>https://orcid.org/0000-0002-0612-7059</orcidid><orcidid>https://orcid.org/0000-0001-5445-9667</orcidid><orcidid>https://orcid.org/0000-0002-7618-4948</orcidid><orcidid>https://orcid.org/0000-0003-3761-2310</orcidid><orcidid>https://orcid.org/0000-0002-3474-4898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-4972
ispartof Technovation, 2023-02, Vol.120, p.102511, Article 102511
issn 0166-4972
1879-2383
language eng
recordid cdi_crossref_primary_10_1016_j_technovation_2022_102511
source ScienceDirect Freedom Collection
subjects China
Europe
IoT
Machine learning
Triple helix
title Interdisciplinary research unlocking innovative solutions in healthcare
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdisciplinary%20research%20unlocking%20innovative%20solutions%20in%20healthcare&rft.jtitle=Technovation&rft.au=Lepore,%20Dominique&rft.date=2023-02&rft.volume=120&rft.spage=102511&rft.pages=102511-&rft.artnum=102511&rft.issn=0166-4972&rft.eissn=1879-2383&rft_id=info:doi/10.1016/j.technovation.2022.102511&rft_dat=%3Celsevier_cross%3ES016649722200058X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true