Loading…
Interdisciplinary research unlocking innovative solutions in healthcare
Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing. Nevertheless, the flow of data about the health status of a patient brings a variety of technical, leg...
Saved in:
Published in: | Technovation 2023-02, Vol.120, p.102511, Article 102511 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493 |
container_end_page | |
container_issue | |
container_start_page | 102511 |
container_title | Technovation |
container_volume | 120 |
creator | Lepore, Dominique Dolui, Koustabh Tomashchuk, Oleksandr Shim, Heereen Puri, Chetanya Li, Yuan Chen, Nuoya Spigarelli, Francesca |
description | Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing.
Nevertheless, the flow of data about the health status of a patient brings a variety of technical, legal and economic challenges that need to be addressed through an interdisciplinary approach.
In this context, based on the action research methodology, the paper introduces an exemplary health-related activity recognition platform based on IoT, developed as a part of European-funded project Horizon 2020 in collaboration with academia and industry.
The platform proposes innovative solutions on how personal healthcare data can be processed and analysed, protecting users’ privacy. The main strength of the platform is the interdisciplinary approach used within a triple-helix model, involving a variety of institutions, companies and researchers from different academic fields. In this perspective, the paper shows the potential that the integration of IoT and ML models have to offer and the main challenges that still need to be addressed.
•Healthcare 4.0 is revolutionizing the way personal health is managed.•Technical, economic and legal barriers limit the adoption of innovative solutions.•The design of innovative solutions calls for interdisciplinary research.•Interdisciplinary research can be boosted in a triple-helix model.•The design of an IoT health-related activity recognition platform is presented. |
doi_str_mv | 10.1016/j.technovation.2022.102511 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_technovation_2022_102511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016649722200058X</els_id><sourcerecordid>S016649722200058X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493</originalsourceid><addsrcrecordid>eNqNkEFPwzAMhSMEEmPwHyruHYmTpQ03NGBMmsQFzlGWOjSjpFPSVeLfk6kcOHKyZPs9P3-E3DK6YJTJu_1iQNuGfjSD78MCKEAewJKxMzJjdaVK4DU_J7O8LEuhKrgkVyntKaUKBJ2R9SYMGBufrD90Ppj4XURMaKJti2Poevvpw0fhw3RixCL13fF0K-Vm0aLphtaaiNfkwpku4c1vnZP356e31Uu5fV1vVg_b0vJKDqWQEpnkyjrnjLVQIbIdyspRECgFoFFcCYdW8CXI3XJXY-OAgXSK10YoPif3k6-NfUoRnT5E_5Vja0b1CYne679I9AmJnpBk8eMkxpxw9Bh1fhuDxcZHtINuev8fmx-pbXPX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interdisciplinary research unlocking innovative solutions in healthcare</title><source>ScienceDirect Freedom Collection</source><creator>Lepore, Dominique ; Dolui, Koustabh ; Tomashchuk, Oleksandr ; Shim, Heereen ; Puri, Chetanya ; Li, Yuan ; Chen, Nuoya ; Spigarelli, Francesca</creator><creatorcontrib>Lepore, Dominique ; Dolui, Koustabh ; Tomashchuk, Oleksandr ; Shim, Heereen ; Puri, Chetanya ; Li, Yuan ; Chen, Nuoya ; Spigarelli, Francesca</creatorcontrib><description>Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing.
Nevertheless, the flow of data about the health status of a patient brings a variety of technical, legal and economic challenges that need to be addressed through an interdisciplinary approach.
In this context, based on the action research methodology, the paper introduces an exemplary health-related activity recognition platform based on IoT, developed as a part of European-funded project Horizon 2020 in collaboration with academia and industry.
The platform proposes innovative solutions on how personal healthcare data can be processed and analysed, protecting users’ privacy. The main strength of the platform is the interdisciplinary approach used within a triple-helix model, involving a variety of institutions, companies and researchers from different academic fields. In this perspective, the paper shows the potential that the integration of IoT and ML models have to offer and the main challenges that still need to be addressed.
•Healthcare 4.0 is revolutionizing the way personal health is managed.•Technical, economic and legal barriers limit the adoption of innovative solutions.•The design of innovative solutions calls for interdisciplinary research.•Interdisciplinary research can be boosted in a triple-helix model.•The design of an IoT health-related activity recognition platform is presented.</description><identifier>ISSN: 0166-4972</identifier><identifier>EISSN: 1879-2383</identifier><identifier>DOI: 10.1016/j.technovation.2022.102511</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>China ; Europe ; IoT ; Machine learning ; Triple helix</subject><ispartof>Technovation, 2023-02, Vol.120, p.102511, Article 102511</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493</citedby><cites>FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493</cites><orcidid>0000-0002-0612-7059 ; 0000-0001-5445-9667 ; 0000-0002-7618-4948 ; 0000-0003-3761-2310 ; 0000-0002-3474-4898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lepore, Dominique</creatorcontrib><creatorcontrib>Dolui, Koustabh</creatorcontrib><creatorcontrib>Tomashchuk, Oleksandr</creatorcontrib><creatorcontrib>Shim, Heereen</creatorcontrib><creatorcontrib>Puri, Chetanya</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Chen, Nuoya</creatorcontrib><creatorcontrib>Spigarelli, Francesca</creatorcontrib><title>Interdisciplinary research unlocking innovative solutions in healthcare</title><title>Technovation</title><description>Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing.
Nevertheless, the flow of data about the health status of a patient brings a variety of technical, legal and economic challenges that need to be addressed through an interdisciplinary approach.
In this context, based on the action research methodology, the paper introduces an exemplary health-related activity recognition platform based on IoT, developed as a part of European-funded project Horizon 2020 in collaboration with academia and industry.
The platform proposes innovative solutions on how personal healthcare data can be processed and analysed, protecting users’ privacy. The main strength of the platform is the interdisciplinary approach used within a triple-helix model, involving a variety of institutions, companies and researchers from different academic fields. In this perspective, the paper shows the potential that the integration of IoT and ML models have to offer and the main challenges that still need to be addressed.
•Healthcare 4.0 is revolutionizing the way personal health is managed.•Technical, economic and legal barriers limit the adoption of innovative solutions.•The design of innovative solutions calls for interdisciplinary research.•Interdisciplinary research can be boosted in a triple-helix model.•The design of an IoT health-related activity recognition platform is presented.</description><subject>China</subject><subject>Europe</subject><subject>IoT</subject><subject>Machine learning</subject><subject>Triple helix</subject><issn>0166-4972</issn><issn>1879-2383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkEFPwzAMhSMEEmPwHyruHYmTpQ03NGBMmsQFzlGWOjSjpFPSVeLfk6kcOHKyZPs9P3-E3DK6YJTJu_1iQNuGfjSD78MCKEAewJKxMzJjdaVK4DU_J7O8LEuhKrgkVyntKaUKBJ2R9SYMGBufrD90Ppj4XURMaKJti2Poevvpw0fhw3RixCL13fF0K-Vm0aLphtaaiNfkwpku4c1vnZP356e31Uu5fV1vVg_b0vJKDqWQEpnkyjrnjLVQIbIdyspRECgFoFFcCYdW8CXI3XJXY-OAgXSK10YoPif3k6-NfUoRnT5E_5Vja0b1CYne679I9AmJnpBk8eMkxpxw9Bh1fhuDxcZHtINuev8fmx-pbXPX</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Lepore, Dominique</creator><creator>Dolui, Koustabh</creator><creator>Tomashchuk, Oleksandr</creator><creator>Shim, Heereen</creator><creator>Puri, Chetanya</creator><creator>Li, Yuan</creator><creator>Chen, Nuoya</creator><creator>Spigarelli, Francesca</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0612-7059</orcidid><orcidid>https://orcid.org/0000-0001-5445-9667</orcidid><orcidid>https://orcid.org/0000-0002-7618-4948</orcidid><orcidid>https://orcid.org/0000-0003-3761-2310</orcidid><orcidid>https://orcid.org/0000-0002-3474-4898</orcidid></search><sort><creationdate>202302</creationdate><title>Interdisciplinary research unlocking innovative solutions in healthcare</title><author>Lepore, Dominique ; Dolui, Koustabh ; Tomashchuk, Oleksandr ; Shim, Heereen ; Puri, Chetanya ; Li, Yuan ; Chen, Nuoya ; Spigarelli, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>China</topic><topic>Europe</topic><topic>IoT</topic><topic>Machine learning</topic><topic>Triple helix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepore, Dominique</creatorcontrib><creatorcontrib>Dolui, Koustabh</creatorcontrib><creatorcontrib>Tomashchuk, Oleksandr</creatorcontrib><creatorcontrib>Shim, Heereen</creatorcontrib><creatorcontrib>Puri, Chetanya</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Chen, Nuoya</creatorcontrib><creatorcontrib>Spigarelli, Francesca</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Technovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepore, Dominique</au><au>Dolui, Koustabh</au><au>Tomashchuk, Oleksandr</au><au>Shim, Heereen</au><au>Puri, Chetanya</au><au>Li, Yuan</au><au>Chen, Nuoya</au><au>Spigarelli, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdisciplinary research unlocking innovative solutions in healthcare</atitle><jtitle>Technovation</jtitle><date>2023-02</date><risdate>2023</risdate><volume>120</volume><spage>102511</spage><pages>102511-</pages><artnum>102511</artnum><issn>0166-4972</issn><eissn>1879-2383</eissn><abstract>Advances in Internet of Things (IoT) devices and in Machine Learning (ML) applications can provide valuable insights and predictions on personal health by optimizing data generation and processing.
Nevertheless, the flow of data about the health status of a patient brings a variety of technical, legal and economic challenges that need to be addressed through an interdisciplinary approach.
In this context, based on the action research methodology, the paper introduces an exemplary health-related activity recognition platform based on IoT, developed as a part of European-funded project Horizon 2020 in collaboration with academia and industry.
The platform proposes innovative solutions on how personal healthcare data can be processed and analysed, protecting users’ privacy. The main strength of the platform is the interdisciplinary approach used within a triple-helix model, involving a variety of institutions, companies and researchers from different academic fields. In this perspective, the paper shows the potential that the integration of IoT and ML models have to offer and the main challenges that still need to be addressed.
•Healthcare 4.0 is revolutionizing the way personal health is managed.•Technical, economic and legal barriers limit the adoption of innovative solutions.•The design of innovative solutions calls for interdisciplinary research.•Interdisciplinary research can be boosted in a triple-helix model.•The design of an IoT health-related activity recognition platform is presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.technovation.2022.102511</doi><orcidid>https://orcid.org/0000-0002-0612-7059</orcidid><orcidid>https://orcid.org/0000-0001-5445-9667</orcidid><orcidid>https://orcid.org/0000-0002-7618-4948</orcidid><orcidid>https://orcid.org/0000-0003-3761-2310</orcidid><orcidid>https://orcid.org/0000-0002-3474-4898</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-4972 |
ispartof | Technovation, 2023-02, Vol.120, p.102511, Article 102511 |
issn | 0166-4972 1879-2383 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_technovation_2022_102511 |
source | ScienceDirect Freedom Collection |
subjects | China Europe IoT Machine learning Triple helix |
title | Interdisciplinary research unlocking innovative solutions in healthcare |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdisciplinary%20research%20unlocking%20innovative%20solutions%20in%20healthcare&rft.jtitle=Technovation&rft.au=Lepore,%20Dominique&rft.date=2023-02&rft.volume=120&rft.spage=102511&rft.pages=102511-&rft.artnum=102511&rft.issn=0166-4972&rft.eissn=1879-2383&rft_id=info:doi/10.1016/j.technovation.2022.102511&rft_dat=%3Celsevier_cross%3ES016649722200058X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-466e1639cfffacc27ee1be67f024e642ea9394fec43526b5b8edf2126f938a493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |