Loading…
Palladium-mediated organic synthesis using porous polymer monolith formed in situ as a continuous catalyst support structure for application in microfluidic devices
The development and advantages of in situ synthesis of organic polymer monolith supports for metal pre-catalysts in narrow bore fused silica capillary microreactors are described. Catalyst immobilisation involves the covalent attachment of ligand binding sites to the porous polymer monolith, followe...
Saved in:
Published in: | Tetrahedron 2009-02, Vol.65 (7), p.1450-1454 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development and advantages of in situ synthesis of organic polymer monolith supports for metal pre-catalysts in narrow bore fused silica capillary microreactors are described. Catalyst immobilisation involves the covalent attachment of ligand binding sites to the porous polymer monolith, followed by coordination to metal centres. Flow-through microreactors using poly(chloromethylstyrene-
co-divinylbenzene) monolith in capillaries of internal diameter 250
μm were used successfully for Suzuki–Miyaura and Sonogashira reactions, utilising both 1,10-phenanthroline and imidazole/carbene binding to palladium and with very low palladium leaching, illustrating the potential of flow-through technology at the microscale level using organic monolith support for transition metal catalysed reactions.
[Display omitted] |
---|---|
ISSN: | 0040-4020 1464-5416 |
DOI: | 10.1016/j.tet.2008.12.007 |