Loading…
The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review
Quercetin, one of the most well-known flavonoids, has been included in human diet for a long history. The use of quercetin has been widely associated with a great number of health benefits, including antioxidant, anti-inflammatory, antiviral and anticancer as well as the function to ease some cardio...
Saved in:
Published in: | Trends in food science & technology 2016-10, Vol.56, p.21-38 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quercetin, one of the most well-known flavonoids, has been included in human diet for a long history. The use of quercetin has been widely associated with a great number of health benefits, including antioxidant, anti-inflammatory, antiviral and anticancer as well as the function to ease some cardiovascular diseases (i.e., heart disease, hypertension, and high blood cholesterol). However, poor water solubility, chemical instability and low bioavailability of quercetin greatly limit its applications. Utilization of delivery systems can improve its stability, efficacy and bioavailability.
In this review, biological activities, chemical stability, metabolism and toxicity of quercetin and different delivery systems for quercetin were discussed.
Quercetin digested in human body (e.g., mouth, small intestine, liver, kidneys) undergoes glucuronidation, sulfation or methylation. During the food processing and storage, many factors such as heat, pH, metal ions, could affect the chemical stability (including oxidation and degradation) of quercetin. Utilization of delivery systems including lipid-based carriers, nanoparticles, inclusion complexes, micelles and conjugates-based encapsulation has the potential to improve both the stability and bioavailability and thus health benefits of quercetin. Each delivery system has its unique advantages and shortcomings, and the specific selection should be based on the application domains. Moreover, the exploration of natural food-grade ingredients as main compositions of delivery systems for quercetin might be required in the future.
•Biological properties, metabolic pathway, chemical stability and delivery systems of quercetin are reviewed.•Delivery systems greatly improve stability and bioavailability of quercetin.•The potential applications of these delivery systems as food antioxidants are discussed. |
---|---|
ISSN: | 0924-2244 1879-3053 |
DOI: | 10.1016/j.tifs.2016.07.004 |