Loading…
Big and large continua in inverse limits of inverse systems over directed graphs
In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua...
Saved in:
Published in: | Topology and its applications 2020-04, Vol.274, p.107119, Article 107119 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3 |
container_end_page | |
container_issue | |
container_start_page | 107119 |
container_title | Topology and its applications |
container_volume | 274 |
creator | Banič, Iztok Črepnjak, Matevž Goričan, Peter Kac, Teja Merhar, Matej Milutinović, Uroš |
description | In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua, if the bonding functions have connected and surjective graphs.
We generalize the notion of generalized inverse limits of inverse sequences of closed intervals with upper semicontinuous bonding functions to inverse limits of inverse systems over directed graphs and show that under certain conditions, such inverse limits also contain large continua. |
doi_str_mv | 10.1016/j.topol.2020.107119 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_topol_2020_107119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166864120300638</els_id><sourcerecordid>S0166864120300638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKtP4CUvsDWTdLPJwYMW_0FBD3oO2WR2TdnulmQt9O1NXfEoDAzz8X3DzI-Qa2ALYCBvNotx2A3dgjN-VCoAfUJmoCpdCM6qUzLLLlkouYRzcpHShjEGuuIz8nYfWmp7TzsbW6Ru6MfQf1ka-lx7jAlpF7ZhTHRo_pR0SCNus5RH6kNEN6KnbbS7z3RJzhrbJbz67XPy8fjwvnou1q9PL6u7deG4VmOBUrFGM4EcJIillhUwVZelqjkKDrYpl7XQ2dOU0inFQLnSC-8rW3LvhRNzIqa9Lg4pRWzMLoatjQcDzByhmI35gWKOUMwEJadupxTm0_YBo0kuYO9w-sL4Ifyb_wY3aGwG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Big and large continua in inverse limits of inverse systems over directed graphs</title><source>ScienceDirect Freedom Collection</source><creator>Banič, Iztok ; Črepnjak, Matevž ; Goričan, Peter ; Kac, Teja ; Merhar, Matej ; Milutinović, Uroš</creator><creatorcontrib>Banič, Iztok ; Črepnjak, Matevž ; Goričan, Peter ; Kac, Teja ; Merhar, Matej ; Milutinović, Uroš</creatorcontrib><description>In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua, if the bonding functions have connected and surjective graphs.
We generalize the notion of generalized inverse limits of inverse sequences of closed intervals with upper semicontinuous bonding functions to inverse limits of inverse systems over directed graphs and show that under certain conditions, such inverse limits also contain large continua.</description><identifier>ISSN: 0166-8641</identifier><identifier>EISSN: 1879-3207</identifier><identifier>DOI: 10.1016/j.topol.2020.107119</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Big continua ; Directed graphs ; Inverse limits ; Large continua</subject><ispartof>Topology and its applications, 2020-04, Vol.274, p.107119, Article 107119</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3</cites><orcidid>0000-0002-5932-4224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Banič, Iztok</creatorcontrib><creatorcontrib>Črepnjak, Matevž</creatorcontrib><creatorcontrib>Goričan, Peter</creatorcontrib><creatorcontrib>Kac, Teja</creatorcontrib><creatorcontrib>Merhar, Matej</creatorcontrib><creatorcontrib>Milutinović, Uroš</creatorcontrib><title>Big and large continua in inverse limits of inverse systems over directed graphs</title><title>Topology and its applications</title><description>In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua, if the bonding functions have connected and surjective graphs.
We generalize the notion of generalized inverse limits of inverse sequences of closed intervals with upper semicontinuous bonding functions to inverse limits of inverse systems over directed graphs and show that under certain conditions, such inverse limits also contain large continua.</description><subject>Big continua</subject><subject>Directed graphs</subject><subject>Inverse limits</subject><subject>Large continua</subject><issn>0166-8641</issn><issn>1879-3207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKtP4CUvsDWTdLPJwYMW_0FBD3oO2WR2TdnulmQt9O1NXfEoDAzz8X3DzI-Qa2ALYCBvNotx2A3dgjN-VCoAfUJmoCpdCM6qUzLLLlkouYRzcpHShjEGuuIz8nYfWmp7TzsbW6Ru6MfQf1ka-lx7jAlpF7ZhTHRo_pR0SCNus5RH6kNEN6KnbbS7z3RJzhrbJbz67XPy8fjwvnou1q9PL6u7deG4VmOBUrFGM4EcJIillhUwVZelqjkKDrYpl7XQ2dOU0inFQLnSC-8rW3LvhRNzIqa9Lg4pRWzMLoatjQcDzByhmI35gWKOUMwEJadupxTm0_YBo0kuYO9w-sL4Ifyb_wY3aGwG</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Banič, Iztok</creator><creator>Črepnjak, Matevž</creator><creator>Goričan, Peter</creator><creator>Kac, Teja</creator><creator>Merhar, Matej</creator><creator>Milutinović, Uroš</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5932-4224</orcidid></search><sort><creationdate>20200401</creationdate><title>Big and large continua in inverse limits of inverse systems over directed graphs</title><author>Banič, Iztok ; Črepnjak, Matevž ; Goričan, Peter ; Kac, Teja ; Merhar, Matej ; Milutinović, Uroš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big continua</topic><topic>Directed graphs</topic><topic>Inverse limits</topic><topic>Large continua</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banič, Iztok</creatorcontrib><creatorcontrib>Črepnjak, Matevž</creatorcontrib><creatorcontrib>Goričan, Peter</creatorcontrib><creatorcontrib>Kac, Teja</creatorcontrib><creatorcontrib>Merhar, Matej</creatorcontrib><creatorcontrib>Milutinović, Uroš</creatorcontrib><collection>CrossRef</collection><jtitle>Topology and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banič, Iztok</au><au>Črepnjak, Matevž</au><au>Goričan, Peter</au><au>Kac, Teja</au><au>Merhar, Matej</au><au>Milutinović, Uroš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big and large continua in inverse limits of inverse systems over directed graphs</atitle><jtitle>Topology and its applications</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>274</volume><spage>107119</spage><pages>107119-</pages><artnum>107119</artnum><issn>0166-8641</issn><eissn>1879-3207</eissn><abstract>In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua, if the bonding functions have connected and surjective graphs.
We generalize the notion of generalized inverse limits of inverse sequences of closed intervals with upper semicontinuous bonding functions to inverse limits of inverse systems over directed graphs and show that under certain conditions, such inverse limits also contain large continua.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.topol.2020.107119</doi><orcidid>https://orcid.org/0000-0002-5932-4224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8641 |
ispartof | Topology and its applications, 2020-04, Vol.274, p.107119, Article 107119 |
issn | 0166-8641 1879-3207 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_topol_2020_107119 |
source | ScienceDirect Freedom Collection |
subjects | Big continua Directed graphs Inverse limits Large continua |
title | Big and large continua in inverse limits of inverse systems over directed graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20and%20large%20continua%20in%20inverse%20limits%20of%20inverse%20systems%20over%20directed%20graphs&rft.jtitle=Topology%20and%20its%20applications&rft.au=Bani%C4%8D,%20Iztok&rft.date=2020-04-01&rft.volume=274&rft.spage=107119&rft.pages=107119-&rft.artnum=107119&rft.issn=0166-8641&rft.eissn=1879-3207&rft_id=info:doi/10.1016/j.topol.2020.107119&rft_dat=%3Celsevier_cross%3ES0166864120300638%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |