Loading…

Big and large continua in inverse limits of inverse systems over directed graphs

In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua...

Full description

Saved in:
Bibliographic Details
Published in:Topology and its applications 2020-04, Vol.274, p.107119, Article 107119
Main Authors: Banič, Iztok, Črepnjak, Matevž, Goričan, Peter, Kac, Teja, Merhar, Matej, Milutinović, Uroš
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3
container_end_page
container_issue
container_start_page 107119
container_title Topology and its applications
container_volume 274
creator Banič, Iztok
Črepnjak, Matevž
Goričan, Peter
Kac, Teja
Merhar, Matej
Milutinović, Uroš
description In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua, if the bonding functions have connected and surjective graphs. We generalize the notion of generalized inverse limits of inverse sequences of closed intervals with upper semicontinuous bonding functions to inverse limits of inverse systems over directed graphs and show that under certain conditions, such inverse limits also contain large continua.
doi_str_mv 10.1016/j.topol.2020.107119
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_topol_2020_107119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166864120300638</els_id><sourcerecordid>S0166864120300638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKtP4CUvsDWTdLPJwYMW_0FBD3oO2WR2TdnulmQt9O1NXfEoDAzz8X3DzI-Qa2ALYCBvNotx2A3dgjN-VCoAfUJmoCpdCM6qUzLLLlkouYRzcpHShjEGuuIz8nYfWmp7TzsbW6Ru6MfQf1ka-lx7jAlpF7ZhTHRo_pR0SCNus5RH6kNEN6KnbbS7z3RJzhrbJbz67XPy8fjwvnou1q9PL6u7deG4VmOBUrFGM4EcJIillhUwVZelqjkKDrYpl7XQ2dOU0inFQLnSC-8rW3LvhRNzIqa9Lg4pRWzMLoatjQcDzByhmI35gWKOUMwEJadupxTm0_YBo0kuYO9w-sL4Ifyb_wY3aGwG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Big and large continua in inverse limits of inverse systems over directed graphs</title><source>ScienceDirect Freedom Collection</source><creator>Banič, Iztok ; Črepnjak, Matevž ; Goričan, Peter ; Kac, Teja ; Merhar, Matej ; Milutinović, Uroš</creator><creatorcontrib>Banič, Iztok ; Črepnjak, Matevž ; Goričan, Peter ; Kac, Teja ; Merhar, Matej ; Milutinović, Uroš</creatorcontrib><description>In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua, if the bonding functions have connected and surjective graphs. We generalize the notion of generalized inverse limits of inverse sequences of closed intervals with upper semicontinuous bonding functions to inverse limits of inverse systems over directed graphs and show that under certain conditions, such inverse limits also contain large continua.</description><identifier>ISSN: 0166-8641</identifier><identifier>EISSN: 1879-3207</identifier><identifier>DOI: 10.1016/j.topol.2020.107119</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Big continua ; Directed graphs ; Inverse limits ; Large continua</subject><ispartof>Topology and its applications, 2020-04, Vol.274, p.107119, Article 107119</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3</cites><orcidid>0000-0002-5932-4224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Banič, Iztok</creatorcontrib><creatorcontrib>Črepnjak, Matevž</creatorcontrib><creatorcontrib>Goričan, Peter</creatorcontrib><creatorcontrib>Kac, Teja</creatorcontrib><creatorcontrib>Merhar, Matej</creatorcontrib><creatorcontrib>Milutinović, Uroš</creatorcontrib><title>Big and large continua in inverse limits of inverse systems over directed graphs</title><title>Topology and its applications</title><description>In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua, if the bonding functions have connected and surjective graphs. We generalize the notion of generalized inverse limits of inverse sequences of closed intervals with upper semicontinuous bonding functions to inverse limits of inverse systems over directed graphs and show that under certain conditions, such inverse limits also contain large continua.</description><subject>Big continua</subject><subject>Directed graphs</subject><subject>Inverse limits</subject><subject>Large continua</subject><issn>0166-8641</issn><issn>1879-3207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKtP4CUvsDWTdLPJwYMW_0FBD3oO2WR2TdnulmQt9O1NXfEoDAzz8X3DzI-Qa2ALYCBvNotx2A3dgjN-VCoAfUJmoCpdCM6qUzLLLlkouYRzcpHShjEGuuIz8nYfWmp7TzsbW6Ru6MfQf1ka-lx7jAlpF7ZhTHRo_pR0SCNus5RH6kNEN6KnbbS7z3RJzhrbJbz67XPy8fjwvnou1q9PL6u7deG4VmOBUrFGM4EcJIillhUwVZelqjkKDrYpl7XQ2dOU0inFQLnSC-8rW3LvhRNzIqa9Lg4pRWzMLoatjQcDzByhmI35gWKOUMwEJadupxTm0_YBo0kuYO9w-sL4Ifyb_wY3aGwG</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Banič, Iztok</creator><creator>Črepnjak, Matevž</creator><creator>Goričan, Peter</creator><creator>Kac, Teja</creator><creator>Merhar, Matej</creator><creator>Milutinović, Uroš</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5932-4224</orcidid></search><sort><creationdate>20200401</creationdate><title>Big and large continua in inverse limits of inverse systems over directed graphs</title><author>Banič, Iztok ; Črepnjak, Matevž ; Goričan, Peter ; Kac, Teja ; Merhar, Matej ; Milutinović, Uroš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big continua</topic><topic>Directed graphs</topic><topic>Inverse limits</topic><topic>Large continua</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banič, Iztok</creatorcontrib><creatorcontrib>Črepnjak, Matevž</creatorcontrib><creatorcontrib>Goričan, Peter</creatorcontrib><creatorcontrib>Kac, Teja</creatorcontrib><creatorcontrib>Merhar, Matej</creatorcontrib><creatorcontrib>Milutinović, Uroš</creatorcontrib><collection>CrossRef</collection><jtitle>Topology and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banič, Iztok</au><au>Črepnjak, Matevž</au><au>Goričan, Peter</au><au>Kac, Teja</au><au>Merhar, Matej</au><au>Milutinović, Uroš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big and large continua in inverse limits of inverse systems over directed graphs</atitle><jtitle>Topology and its applications</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>274</volume><spage>107119</spage><pages>107119-</pages><artnum>107119</artnum><issn>0166-8641</issn><eissn>1879-3207</eissn><abstract>In the theory of generalized inverse limits it is a well-known fact that the generalized inverse limits may not be connected even if all the factor spaces are closed intervals. However, it has been shown recently by Banič and Kennedy that such generalized inverse limits always contain large continua, if the bonding functions have connected and surjective graphs. We generalize the notion of generalized inverse limits of inverse sequences of closed intervals with upper semicontinuous bonding functions to inverse limits of inverse systems over directed graphs and show that under certain conditions, such inverse limits also contain large continua.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.topol.2020.107119</doi><orcidid>https://orcid.org/0000-0002-5932-4224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-8641
ispartof Topology and its applications, 2020-04, Vol.274, p.107119, Article 107119
issn 0166-8641
1879-3207
language eng
recordid cdi_crossref_primary_10_1016_j_topol_2020_107119
source ScienceDirect Freedom Collection
subjects Big continua
Directed graphs
Inverse limits
Large continua
title Big and large continua in inverse limits of inverse systems over directed graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20and%20large%20continua%20in%20inverse%20limits%20of%20inverse%20systems%20over%20directed%20graphs&rft.jtitle=Topology%20and%20its%20applications&rft.au=Bani%C4%8D,%20Iztok&rft.date=2020-04-01&rft.volume=274&rft.spage=107119&rft.pages=107119-&rft.artnum=107119&rft.issn=0166-8641&rft.eissn=1879-3207&rft_id=info:doi/10.1016/j.topol.2020.107119&rft_dat=%3Celsevier_cross%3ES0166864120300638%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-e680f903e216134967108b558b2e321af54b3980ff56c88018c5d3dd7a52dd3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true