Loading…

Second-countable compact Hausdorff spaces as remainders in ZF and two new notions of infiniteness

In the absence of the Axiom of Choice, necessary and sufficient conditions for a locally compact Hausdorff space to have all non-empty second-countable compact Hausdorff spaces as remainders are given in ZF. Among other independence results, the characterization of locally compact Hausdorff spaces h...

Full description

Saved in:
Bibliographic Details
Published in:Topology and its applications 2021-07, Vol.298, p.107732, Article 107732
Main Authors: Keremedis, Kyriakos, Tachtsis, Eleftherios, Wajch, Eliza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c233t-d785b55a983d8c397ce2c72f6b9ea6d323a894dae208c3845daaca7984a59d503
cites cdi_FETCH-LOGICAL-c233t-d785b55a983d8c397ce2c72f6b9ea6d323a894dae208c3845daaca7984a59d503
container_end_page
container_issue
container_start_page 107732
container_title Topology and its applications
container_volume 298
creator Keremedis, Kyriakos
Tachtsis, Eleftherios
Wajch, Eliza
description In the absence of the Axiom of Choice, necessary and sufficient conditions for a locally compact Hausdorff space to have all non-empty second-countable compact Hausdorff spaces as remainders are given in ZF. Among other independence results, the characterization of locally compact Hausdorff spaces having all non-empty metrizable compact spaces as remainders, obtained by Hatzenbuhler and Mattson in ZFC, is proved to be independent of ZF. Urysohn's Metrization Theorem is generalized. New concepts of a strongly filterbase infinite set and a dyadically filterbase infinite set are introduced, both stemming from the investigations on compactifications. Set-theoretic and topological definitions of the new concepts are given, and their relationship with certain known notions of infinite sets is investigated in ZF. A new permutation model is introduced in which there exists a strongly filterbase infinite set which is weakly Dedekind-finite.
doi_str_mv 10.1016/j.topol.2021.107732
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_topol_2021_107732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166864121001462</els_id><sourcerecordid>S0166864121001462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-d785b55a983d8c397ce2c72f6b9ea6d323a894dae208c3845daaca7984a59d503</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKtP4CUvsDV_djfJwYMUq0LBg3rxEqbJLKS0SUlSi2_v1nr2NMz85huGj5Bbzmac8f5uPatplzYzwQQfJ0pJcUYmXCvTSMHUOZmMW32j-5ZfkqtS1owxbpSYEHhDl6JvXNrHCqsNUpe2O3CVPsO--JSHgZaxx0Kh0IxbCNFjLjRE-rmgED2th0QjHmhMNaRYaBrGcAgxVIxYyjW5GGBT8OavTsnH4vF9_twsX59e5g_Lxgkpa-OV7lZdB0ZLr500yqFwSgz9yiD0XgoJ2rQeULAx1m3nARwoo1vojO-YnBJ5uutyKiXjYHc5bCF_W87s0ZJd219L9mjJniyN1P2JwvG1r4DZFhcwOvQho6vWp_Av_wN2WnM7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Second-countable compact Hausdorff spaces as remainders in ZF and two new notions of infiniteness</title><source>Elsevier</source><creator>Keremedis, Kyriakos ; Tachtsis, Eleftherios ; Wajch, Eliza</creator><creatorcontrib>Keremedis, Kyriakos ; Tachtsis, Eleftherios ; Wajch, Eliza</creatorcontrib><description>In the absence of the Axiom of Choice, necessary and sufficient conditions for a locally compact Hausdorff space to have all non-empty second-countable compact Hausdorff spaces as remainders are given in ZF. Among other independence results, the characterization of locally compact Hausdorff spaces having all non-empty metrizable compact spaces as remainders, obtained by Hatzenbuhler and Mattson in ZFC, is proved to be independent of ZF. Urysohn's Metrization Theorem is generalized. New concepts of a strongly filterbase infinite set and a dyadically filterbase infinite set are introduced, both stemming from the investigations on compactifications. Set-theoretic and topological definitions of the new concepts are given, and their relationship with certain known notions of infinite sets is investigated in ZF. A new permutation model is introduced in which there exists a strongly filterbase infinite set which is weakly Dedekind-finite.</description><identifier>ISSN: 0166-8641</identifier><identifier>EISSN: 1879-3207</identifier><identifier>DOI: 10.1016/j.topol.2021.107732</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cantor set ; Compactification ; Metrizability ; Remainder ; Urysohn's metrization theorem ; Weak forms of the Axiom of Choice</subject><ispartof>Topology and its applications, 2021-07, Vol.298, p.107732, Article 107732</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c233t-d785b55a983d8c397ce2c72f6b9ea6d323a894dae208c3845daaca7984a59d503</citedby><cites>FETCH-LOGICAL-c233t-d785b55a983d8c397ce2c72f6b9ea6d323a894dae208c3845daaca7984a59d503</cites><orcidid>0000-0003-1864-2303 ; 0000-0001-9114-3661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Keremedis, Kyriakos</creatorcontrib><creatorcontrib>Tachtsis, Eleftherios</creatorcontrib><creatorcontrib>Wajch, Eliza</creatorcontrib><title>Second-countable compact Hausdorff spaces as remainders in ZF and two new notions of infiniteness</title><title>Topology and its applications</title><description>In the absence of the Axiom of Choice, necessary and sufficient conditions for a locally compact Hausdorff space to have all non-empty second-countable compact Hausdorff spaces as remainders are given in ZF. Among other independence results, the characterization of locally compact Hausdorff spaces having all non-empty metrizable compact spaces as remainders, obtained by Hatzenbuhler and Mattson in ZFC, is proved to be independent of ZF. Urysohn's Metrization Theorem is generalized. New concepts of a strongly filterbase infinite set and a dyadically filterbase infinite set are introduced, both stemming from the investigations on compactifications. Set-theoretic and topological definitions of the new concepts are given, and their relationship with certain known notions of infinite sets is investigated in ZF. A new permutation model is introduced in which there exists a strongly filterbase infinite set which is weakly Dedekind-finite.</description><subject>Cantor set</subject><subject>Compactification</subject><subject>Metrizability</subject><subject>Remainder</subject><subject>Urysohn's metrization theorem</subject><subject>Weak forms of the Axiom of Choice</subject><issn>0166-8641</issn><issn>1879-3207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWKtP4CUvsDV_djfJwYMUq0LBg3rxEqbJLKS0SUlSi2_v1nr2NMz85huGj5Bbzmac8f5uPatplzYzwQQfJ0pJcUYmXCvTSMHUOZmMW32j-5ZfkqtS1owxbpSYEHhDl6JvXNrHCqsNUpe2O3CVPsO--JSHgZaxx0Kh0IxbCNFjLjRE-rmgED2th0QjHmhMNaRYaBrGcAgxVIxYyjW5GGBT8OavTsnH4vF9_twsX59e5g_Lxgkpa-OV7lZdB0ZLr500yqFwSgz9yiD0XgoJ2rQeULAx1m3nARwoo1vojO-YnBJ5uutyKiXjYHc5bCF_W87s0ZJd219L9mjJniyN1P2JwvG1r4DZFhcwOvQho6vWp_Av_wN2WnM7</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Keremedis, Kyriakos</creator><creator>Tachtsis, Eleftherios</creator><creator>Wajch, Eliza</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1864-2303</orcidid><orcidid>https://orcid.org/0000-0001-9114-3661</orcidid></search><sort><creationdate>20210701</creationdate><title>Second-countable compact Hausdorff spaces as remainders in ZF and two new notions of infiniteness</title><author>Keremedis, Kyriakos ; Tachtsis, Eleftherios ; Wajch, Eliza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-d785b55a983d8c397ce2c72f6b9ea6d323a894dae208c3845daaca7984a59d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cantor set</topic><topic>Compactification</topic><topic>Metrizability</topic><topic>Remainder</topic><topic>Urysohn's metrization theorem</topic><topic>Weak forms of the Axiom of Choice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keremedis, Kyriakos</creatorcontrib><creatorcontrib>Tachtsis, Eleftherios</creatorcontrib><creatorcontrib>Wajch, Eliza</creatorcontrib><collection>CrossRef</collection><jtitle>Topology and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keremedis, Kyriakos</au><au>Tachtsis, Eleftherios</au><au>Wajch, Eliza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-countable compact Hausdorff spaces as remainders in ZF and two new notions of infiniteness</atitle><jtitle>Topology and its applications</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>298</volume><spage>107732</spage><pages>107732-</pages><artnum>107732</artnum><issn>0166-8641</issn><eissn>1879-3207</eissn><abstract>In the absence of the Axiom of Choice, necessary and sufficient conditions for a locally compact Hausdorff space to have all non-empty second-countable compact Hausdorff spaces as remainders are given in ZF. Among other independence results, the characterization of locally compact Hausdorff spaces having all non-empty metrizable compact spaces as remainders, obtained by Hatzenbuhler and Mattson in ZFC, is proved to be independent of ZF. Urysohn's Metrization Theorem is generalized. New concepts of a strongly filterbase infinite set and a dyadically filterbase infinite set are introduced, both stemming from the investigations on compactifications. Set-theoretic and topological definitions of the new concepts are given, and their relationship with certain known notions of infinite sets is investigated in ZF. A new permutation model is introduced in which there exists a strongly filterbase infinite set which is weakly Dedekind-finite.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.topol.2021.107732</doi><orcidid>https://orcid.org/0000-0003-1864-2303</orcidid><orcidid>https://orcid.org/0000-0001-9114-3661</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-8641
ispartof Topology and its applications, 2021-07, Vol.298, p.107732, Article 107732
issn 0166-8641
1879-3207
language eng
recordid cdi_crossref_primary_10_1016_j_topol_2021_107732
source Elsevier
subjects Cantor set
Compactification
Metrizability
Remainder
Urysohn's metrization theorem
Weak forms of the Axiom of Choice
title Second-countable compact Hausdorff spaces as remainders in ZF and two new notions of infiniteness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-countable%20compact%20Hausdorff%20spaces%20as%20remainders%20in%20ZF%20and%20two%20new%20notions%20of%20infiniteness&rft.jtitle=Topology%20and%20its%20applications&rft.au=Keremedis,%20Kyriakos&rft.date=2021-07-01&rft.volume=298&rft.spage=107732&rft.pages=107732-&rft.artnum=107732&rft.issn=0166-8641&rft.eissn=1879-3207&rft_id=info:doi/10.1016/j.topol.2021.107732&rft_dat=%3Celsevier_cross%3ES0166864121001462%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-d785b55a983d8c397ce2c72f6b9ea6d323a894dae208c3845daaca7984a59d503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true