Loading…

Skein theoretic approach to Yang-Baxter homology

We introduce skein theoretic techniques to compute the Yang-Baxter (YB) homology and cohomology groups of the R-matrix corresponding to the Jones polynomial. More specifically, we show that the YB operator R for Jones, normalized for homology, admits a skein decomposition R=I+βα, where α:V⊗2→k is a...

Full description

Saved in:
Bibliographic Details
Published in:Topology and its applications 2021-10, Vol.302, p.107836, Article 107836
Main Authors: Elhamdadi, Mohamed, Saito, Masahico, Zappala, Emanuele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-607a53341e12a3cdf3fd537a9db34634f78ce336b22a893009fb422ec5574183
cites cdi_FETCH-LOGICAL-c348t-607a53341e12a3cdf3fd537a9db34634f78ce336b22a893009fb422ec5574183
container_end_page
container_issue
container_start_page 107836
container_title Topology and its applications
container_volume 302
creator Elhamdadi, Mohamed
Saito, Masahico
Zappala, Emanuele
description We introduce skein theoretic techniques to compute the Yang-Baxter (YB) homology and cohomology groups of the R-matrix corresponding to the Jones polynomial. More specifically, we show that the YB operator R for Jones, normalized for homology, admits a skein decomposition R=I+βα, where α:V⊗2→k is a “cup” pairing map and β:k→V⊗2 is a “cap” copairing map, and differentials in the chain complex associated to R can be decomposed into horizontal tensor concatenations of cups and caps. We apply our skein theoretic approach to determine the second and third YB homology groups, confirming a conjecture of Przytycki and Wang. Further, we compute the cohomology groups of R, and provide computations in higher dimensions that yield some annihilations of submodules.
doi_str_mv 10.1016/j.topol.2021.107836
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_topol_2021_107836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166864121002510</els_id><sourcerecordid>S0166864121002510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-607a53341e12a3cdf3fd537a9db34634f78ce336b22a893009fb422ec5574183</originalsourceid><addsrcrecordid>eNp9j7FOwzAURS0EEqXwBSz5gQTbz7GdgQEqKEiVGOjCZLnOS-uSxpFjIfr3pISZ6UlX71zdQ8gtowWjTN7tixT60BaccjYmSoM8IzOmVZUDp-qczMYvmWsp2CW5GoY9pZRVis8Iff9E32VphyFi8i6zfR-DdbsshezDdtv80X4njNkuHEIbtsdrctHYdsCbvzsn6-en9eIlX70tXxcPq9yB0CmXVNkSQDBk3IKrG2jqEpSt6g0ICaJR2iGA3HBudQWUVs1GcI6uLJVgGuYEploXwzBEbEwf_cHGo2HUnJzN3vw6m5OzmZxH6n6icFz25TGawXnsHNY-okumDv5f_gfzYF_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Skein theoretic approach to Yang-Baxter homology</title><source>ScienceDirect Journals</source><creator>Elhamdadi, Mohamed ; Saito, Masahico ; Zappala, Emanuele</creator><creatorcontrib>Elhamdadi, Mohamed ; Saito, Masahico ; Zappala, Emanuele</creatorcontrib><description>We introduce skein theoretic techniques to compute the Yang-Baxter (YB) homology and cohomology groups of the R-matrix corresponding to the Jones polynomial. More specifically, we show that the YB operator R for Jones, normalized for homology, admits a skein decomposition R=I+βα, where α:V⊗2→k is a “cup” pairing map and β:k→V⊗2 is a “cap” copairing map, and differentials in the chain complex associated to R can be decomposed into horizontal tensor concatenations of cups and caps. We apply our skein theoretic approach to determine the second and third YB homology groups, confirming a conjecture of Przytycki and Wang. Further, we compute the cohomology groups of R, and provide computations in higher dimensions that yield some annihilations of submodules.</description><identifier>ISSN: 0166-8641</identifier><identifier>EISSN: 1879-3207</identifier><identifier>DOI: 10.1016/j.topol.2021.107836</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Homology ; Skein theoretic techniques ; Yang-Baxter operator</subject><ispartof>Topology and its applications, 2021-10, Vol.302, p.107836, Article 107836</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-607a53341e12a3cdf3fd537a9db34634f78ce336b22a893009fb422ec5574183</citedby><cites>FETCH-LOGICAL-c348t-607a53341e12a3cdf3fd537a9db34634f78ce336b22a893009fb422ec5574183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Elhamdadi, Mohamed</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Zappala, Emanuele</creatorcontrib><title>Skein theoretic approach to Yang-Baxter homology</title><title>Topology and its applications</title><description>We introduce skein theoretic techniques to compute the Yang-Baxter (YB) homology and cohomology groups of the R-matrix corresponding to the Jones polynomial. More specifically, we show that the YB operator R for Jones, normalized for homology, admits a skein decomposition R=I+βα, where α:V⊗2→k is a “cup” pairing map and β:k→V⊗2 is a “cap” copairing map, and differentials in the chain complex associated to R can be decomposed into horizontal tensor concatenations of cups and caps. We apply our skein theoretic approach to determine the second and third YB homology groups, confirming a conjecture of Przytycki and Wang. Further, we compute the cohomology groups of R, and provide computations in higher dimensions that yield some annihilations of submodules.</description><subject>Homology</subject><subject>Skein theoretic techniques</subject><subject>Yang-Baxter operator</subject><issn>0166-8641</issn><issn>1879-3207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j7FOwzAURS0EEqXwBSz5gQTbz7GdgQEqKEiVGOjCZLnOS-uSxpFjIfr3pISZ6UlX71zdQ8gtowWjTN7tixT60BaccjYmSoM8IzOmVZUDp-qczMYvmWsp2CW5GoY9pZRVis8Iff9E32VphyFi8i6zfR-DdbsshezDdtv80X4njNkuHEIbtsdrctHYdsCbvzsn6-en9eIlX70tXxcPq9yB0CmXVNkSQDBk3IKrG2jqEpSt6g0ICaJR2iGA3HBudQWUVs1GcI6uLJVgGuYEploXwzBEbEwf_cHGo2HUnJzN3vw6m5OzmZxH6n6icFz25TGawXnsHNY-okumDv5f_gfzYF_U</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Elhamdadi, Mohamed</creator><creator>Saito, Masahico</creator><creator>Zappala, Emanuele</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Skein theoretic approach to Yang-Baxter homology</title><author>Elhamdadi, Mohamed ; Saito, Masahico ; Zappala, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-607a53341e12a3cdf3fd537a9db34634f78ce336b22a893009fb422ec5574183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Homology</topic><topic>Skein theoretic techniques</topic><topic>Yang-Baxter operator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elhamdadi, Mohamed</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Zappala, Emanuele</creatorcontrib><collection>CrossRef</collection><jtitle>Topology and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elhamdadi, Mohamed</au><au>Saito, Masahico</au><au>Zappala, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skein theoretic approach to Yang-Baxter homology</atitle><jtitle>Topology and its applications</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>302</volume><spage>107836</spage><pages>107836-</pages><artnum>107836</artnum><issn>0166-8641</issn><eissn>1879-3207</eissn><abstract>We introduce skein theoretic techniques to compute the Yang-Baxter (YB) homology and cohomology groups of the R-matrix corresponding to the Jones polynomial. More specifically, we show that the YB operator R for Jones, normalized for homology, admits a skein decomposition R=I+βα, where α:V⊗2→k is a “cup” pairing map and β:k→V⊗2 is a “cap” copairing map, and differentials in the chain complex associated to R can be decomposed into horizontal tensor concatenations of cups and caps. We apply our skein theoretic approach to determine the second and third YB homology groups, confirming a conjecture of Przytycki and Wang. Further, we compute the cohomology groups of R, and provide computations in higher dimensions that yield some annihilations of submodules.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.topol.2021.107836</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-8641
ispartof Topology and its applications, 2021-10, Vol.302, p.107836, Article 107836
issn 0166-8641
1879-3207
language eng
recordid cdi_crossref_primary_10_1016_j_topol_2021_107836
source ScienceDirect Journals
subjects Homology
Skein theoretic techniques
Yang-Baxter operator
title Skein theoretic approach to Yang-Baxter homology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skein%20theoretic%20approach%20to%20Yang-Baxter%20homology&rft.jtitle=Topology%20and%20its%20applications&rft.au=Elhamdadi,%20Mohamed&rft.date=2021-10-01&rft.volume=302&rft.spage=107836&rft.pages=107836-&rft.artnum=107836&rft.issn=0166-8641&rft.eissn=1879-3207&rft_id=info:doi/10.1016/j.topol.2021.107836&rft_dat=%3Celsevier_cross%3ES0166864121002510%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-607a53341e12a3cdf3fd537a9db34634f78ce336b22a893009fb422ec5574183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true