Loading…

Extensions of augmented racks and surface ribbon cocycle invariants

A rack is a set with a binary operation that is right-invertible and self-distributive, properties diagrammatically corresponding to Reidemeister moves II and III, respectively. A rack is said to be an augmented rack if the operation is written by a group action. Racks and their cohomology theories...

Full description

Saved in:
Bibliographic Details
Published in:Topology and its applications 2023-08, Vol.335, p.108555, Article 108555
Main Authors: Saito, Masahico, Zappala, Emanuele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c253t-4c64e7eb3b5ed7b22a85d3c6c7ec03abe48ccc59c3fb6e9f8b2082a6a81f78f3
container_end_page
container_issue
container_start_page 108555
container_title Topology and its applications
container_volume 335
creator Saito, Masahico
Zappala, Emanuele
description A rack is a set with a binary operation that is right-invertible and self-distributive, properties diagrammatically corresponding to Reidemeister moves II and III, respectively. A rack is said to be an augmented rack if the operation is written by a group action. Racks and their cohomology theories have been extensively used for knot and knotted surface invariants. Similarly to group cohomology, rack 2-cocycles relate to extensions, and a natural question that arises is to characterize the extensions of augmented racks that are themselves augmented racks. In this paper, we characterize such extensions in terms of what we call fibrant and additive cohomology of racks. Simultaneous extensions of racks and groups are considered, where the respective 2-cocycles are related through a certain formula. Furthermore, we construct coloring and cocycle invariants for compact orientable surfaces with boundary in ribbon forms embedded in 3-space.
doi_str_mv 10.1016/j.topol.2023.108555
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_topol_2023_108555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166864123001499</els_id><sourcerecordid>S0166864123001499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-4c64e7eb3b5ed7b22a85d3c6c7ec03abe48ccc59c3fb6e9f8b2082a6a81f78f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtP4CYvMDU_M5PMwoWUaoWCm-5DcudGUtukJNNi396pde3qwuF-h8NHyCNnM854-7SZDWmftjPBhBwT3TTNFZlwrbpKCqauyWT8aivd1vyW3JWyYYzxTokJmS--B4wlpFho8tQePncYB-xptvBVqI09LYfsLSDNwbkUKSQ4wRZpiEebg41DuSc33m4LPvzdKVm_LtbzZbX6eHufv6wqEI0cqhraGhU66RrslRPC6qaX0IJCYNI6rDUANB1I71rsvHaCaWFbq7lX2sspkZdayKmUjN7sc9jZfDKcmbMGszG_GsxZg7loGKnnC4XjsmPAbAoEjIB9yAiD6VP4l_8BOBppQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extensions of augmented racks and surface ribbon cocycle invariants</title><source>Elsevier</source><creator>Saito, Masahico ; Zappala, Emanuele</creator><creatorcontrib>Saito, Masahico ; Zappala, Emanuele</creatorcontrib><description>A rack is a set with a binary operation that is right-invertible and self-distributive, properties diagrammatically corresponding to Reidemeister moves II and III, respectively. A rack is said to be an augmented rack if the operation is written by a group action. Racks and their cohomology theories have been extensively used for knot and knotted surface invariants. Similarly to group cohomology, rack 2-cocycles relate to extensions, and a natural question that arises is to characterize the extensions of augmented racks that are themselves augmented racks. In this paper, we characterize such extensions in terms of what we call fibrant and additive cohomology of racks. Simultaneous extensions of racks and groups are considered, where the respective 2-cocycles are related through a certain formula. Furthermore, we construct coloring and cocycle invariants for compact orientable surfaces with boundary in ribbon forms embedded in 3-space.</description><identifier>ISSN: 0166-8641</identifier><identifier>EISSN: 1879-3207</identifier><identifier>DOI: 10.1016/j.topol.2023.108555</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Augmented rack cohomology ; Compact orientable surface with boundary</subject><ispartof>Topology and its applications, 2023-08, Vol.335, p.108555, Article 108555</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-4c64e7eb3b5ed7b22a85d3c6c7ec03abe48ccc59c3fb6e9f8b2082a6a81f78f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Zappala, Emanuele</creatorcontrib><title>Extensions of augmented racks and surface ribbon cocycle invariants</title><title>Topology and its applications</title><description>A rack is a set with a binary operation that is right-invertible and self-distributive, properties diagrammatically corresponding to Reidemeister moves II and III, respectively. A rack is said to be an augmented rack if the operation is written by a group action. Racks and their cohomology theories have been extensively used for knot and knotted surface invariants. Similarly to group cohomology, rack 2-cocycles relate to extensions, and a natural question that arises is to characterize the extensions of augmented racks that are themselves augmented racks. In this paper, we characterize such extensions in terms of what we call fibrant and additive cohomology of racks. Simultaneous extensions of racks and groups are considered, where the respective 2-cocycles are related through a certain formula. Furthermore, we construct coloring and cocycle invariants for compact orientable surfaces with boundary in ribbon forms embedded in 3-space.</description><subject>Augmented rack cohomology</subject><subject>Compact orientable surface with boundary</subject><issn>0166-8641</issn><issn>1879-3207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtP4CYvMDU_M5PMwoWUaoWCm-5DcudGUtukJNNi396pde3qwuF-h8NHyCNnM854-7SZDWmftjPBhBwT3TTNFZlwrbpKCqauyWT8aivd1vyW3JWyYYzxTokJmS--B4wlpFho8tQePncYB-xptvBVqI09LYfsLSDNwbkUKSQ4wRZpiEebg41DuSc33m4LPvzdKVm_LtbzZbX6eHufv6wqEI0cqhraGhU66RrslRPC6qaX0IJCYNI6rDUANB1I71rsvHaCaWFbq7lX2sspkZdayKmUjN7sc9jZfDKcmbMGszG_GsxZg7loGKnnC4XjsmPAbAoEjIB9yAiD6VP4l_8BOBppQQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Saito, Masahico</creator><creator>Zappala, Emanuele</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Extensions of augmented racks and surface ribbon cocycle invariants</title><author>Saito, Masahico ; Zappala, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-4c64e7eb3b5ed7b22a85d3c6c7ec03abe48ccc59c3fb6e9f8b2082a6a81f78f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Augmented rack cohomology</topic><topic>Compact orientable surface with boundary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Masahico</creatorcontrib><creatorcontrib>Zappala, Emanuele</creatorcontrib><collection>CrossRef</collection><jtitle>Topology and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Masahico</au><au>Zappala, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extensions of augmented racks and surface ribbon cocycle invariants</atitle><jtitle>Topology and its applications</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>335</volume><spage>108555</spage><pages>108555-</pages><artnum>108555</artnum><issn>0166-8641</issn><eissn>1879-3207</eissn><abstract>A rack is a set with a binary operation that is right-invertible and self-distributive, properties diagrammatically corresponding to Reidemeister moves II and III, respectively. A rack is said to be an augmented rack if the operation is written by a group action. Racks and their cohomology theories have been extensively used for knot and knotted surface invariants. Similarly to group cohomology, rack 2-cocycles relate to extensions, and a natural question that arises is to characterize the extensions of augmented racks that are themselves augmented racks. In this paper, we characterize such extensions in terms of what we call fibrant and additive cohomology of racks. Simultaneous extensions of racks and groups are considered, where the respective 2-cocycles are related through a certain formula. Furthermore, we construct coloring and cocycle invariants for compact orientable surfaces with boundary in ribbon forms embedded in 3-space.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.topol.2023.108555</doi></addata></record>
fulltext fulltext
identifier ISSN: 0166-8641
ispartof Topology and its applications, 2023-08, Vol.335, p.108555, Article 108555
issn 0166-8641
1879-3207
language eng
recordid cdi_crossref_primary_10_1016_j_topol_2023_108555
source Elsevier
subjects Augmented rack cohomology
Compact orientable surface with boundary
title Extensions of augmented racks and surface ribbon cocycle invariants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extensions%20of%20augmented%20racks%20and%20surface%20ribbon%20cocycle%20invariants&rft.jtitle=Topology%20and%20its%20applications&rft.au=Saito,%20Masahico&rft.date=2023-08-01&rft.volume=335&rft.spage=108555&rft.pages=108555-&rft.artnum=108555&rft.issn=0166-8641&rft.eissn=1879-3207&rft_id=info:doi/10.1016/j.topol.2023.108555&rft_dat=%3Celsevier_cross%3ES0166864123001499%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-4c64e7eb3b5ed7b22a85d3c6c7ec03abe48ccc59c3fb6e9f8b2082a6a81f78f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true