Loading…
Weakly first-countability in strongly topological gyrogroups
In this note, it is proved that (1) if (G,τ,⊕) is a strongly topological gyrogroup and H is a closed strong subgyrogroup of G, then G/H is κ-Fréchet-Urysohn if and only if G/H is strongly κ-Fréchet-Urysohn under the condition that H is neutral; (2) let H be a closed strong subgyrogroup of a strongly...
Saved in:
Published in: | Topology and its applications 2024-06, Vol.350, p.108920, Article 108920 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c253t-556fe7b3ad9d83b8b043267cdffd8f5a973c0e5773302a346407c8d6174946a73 |
container_end_page | |
container_issue | |
container_start_page | 108920 |
container_title | Topology and its applications |
container_volume | 350 |
creator | Zhang, Jing Lin, Kaixiong Xi, Wenfei |
description | In this note, it is proved that (1) if (G,τ,⊕) is a strongly topological gyrogroup and H is a closed strong subgyrogroup of G, then G/H is κ-Fréchet-Urysohn if and only if G/H is strongly κ-Fréchet-Urysohn under the condition that H is neutral; (2) let H be a closed strong subgyrogroup of a strongly topological gyrogroup(G,τ,⊕), then the equality Δ(G/H)=ψ(G/H) holds when H is neutral; (3) if (G,τ,⊕) is a sequential strongly topological gyrogroup having a point-countable k-network, then G is metrizable or a topological sum of cosmic subspaces. There results improve the related results in topological groups. |
doi_str_mv | 10.1016/j.topol.2024.108920 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_topol_2024_108920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166864124001056</els_id><sourcerecordid>S0166864124001056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-556fe7b3ad9d83b8b043267cdffd8f5a973c0e5773302a346407c8d6174946a73</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gZu-QMeTS5MUdCHiDQbcKC5DmkvJWJshyQh9ezszrl0dOOd8Pz8fQtcYVhgwv9msStzGYUWAsHkjWwInaIGlaGtKQJyixfzFa8kZPkcXOW8AALeCLNDtp9Nfw1T5kHKpTdyNRXdhCGWqwljlkuLYz-dDfOyD0UPVTyn2Ke62-RKdeT1kd_U3l-jj6fH94aVevz2_Ptyva0MaWuqm4d6JjmrbWkk72QGjhAtjvbfSN7oV1IBrhKAUiKaMMxBGWo4FaxnXgi4RPeaaFHNOzqttCt86TQqD2gtQG3VoqPYC1FHATN0dKTdX-wkuqWyCG42zITlTlI3hX_4XKvxmBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weakly first-countability in strongly topological gyrogroups</title><source>Elsevier</source><creator>Zhang, Jing ; Lin, Kaixiong ; Xi, Wenfei</creator><creatorcontrib>Zhang, Jing ; Lin, Kaixiong ; Xi, Wenfei</creatorcontrib><description>In this note, it is proved that (1) if (G,τ,⊕) is a strongly topological gyrogroup and H is a closed strong subgyrogroup of G, then G/H is κ-Fréchet-Urysohn if and only if G/H is strongly κ-Fréchet-Urysohn under the condition that H is neutral; (2) let H be a closed strong subgyrogroup of a strongly topological gyrogroup(G,τ,⊕), then the equality Δ(G/H)=ψ(G/H) holds when H is neutral; (3) if (G,τ,⊕) is a sequential strongly topological gyrogroup having a point-countable k-network, then G is metrizable or a topological sum of cosmic subspaces. There results improve the related results in topological groups.</description><identifier>ISSN: 0166-8641</identifier><identifier>EISSN: 1879-3207</identifier><identifier>DOI: 10.1016/j.topol.2024.108920</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>k-networks ; Neutral strong subgyrogroups ; Point-countable covers ; Sequential spaces ; Topological gyrogroups</subject><ispartof>Topology and its applications, 2024-06, Vol.350, p.108920, Article 108920</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-556fe7b3ad9d83b8b043267cdffd8f5a973c0e5773302a346407c8d6174946a73</cites><orcidid>0000-0003-3612-2213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Lin, Kaixiong</creatorcontrib><creatorcontrib>Xi, Wenfei</creatorcontrib><title>Weakly first-countability in strongly topological gyrogroups</title><title>Topology and its applications</title><description>In this note, it is proved that (1) if (G,τ,⊕) is a strongly topological gyrogroup and H is a closed strong subgyrogroup of G, then G/H is κ-Fréchet-Urysohn if and only if G/H is strongly κ-Fréchet-Urysohn under the condition that H is neutral; (2) let H be a closed strong subgyrogroup of a strongly topological gyrogroup(G,τ,⊕), then the equality Δ(G/H)=ψ(G/H) holds when H is neutral; (3) if (G,τ,⊕) is a sequential strongly topological gyrogroup having a point-countable k-network, then G is metrizable or a topological sum of cosmic subspaces. There results improve the related results in topological groups.</description><subject>k-networks</subject><subject>Neutral strong subgyrogroups</subject><subject>Point-countable covers</subject><subject>Sequential spaces</subject><subject>Topological gyrogroups</subject><issn>0166-8641</issn><issn>1879-3207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gZu-QMeTS5MUdCHiDQbcKC5DmkvJWJshyQh9ezszrl0dOOd8Pz8fQtcYVhgwv9msStzGYUWAsHkjWwInaIGlaGtKQJyixfzFa8kZPkcXOW8AALeCLNDtp9Nfw1T5kHKpTdyNRXdhCGWqwljlkuLYz-dDfOyD0UPVTyn2Ke62-RKdeT1kd_U3l-jj6fH94aVevz2_Ptyva0MaWuqm4d6JjmrbWkk72QGjhAtjvbfSN7oV1IBrhKAUiKaMMxBGWo4FaxnXgi4RPeaaFHNOzqttCt86TQqD2gtQG3VoqPYC1FHATN0dKTdX-wkuqWyCG42zITlTlI3hX_4XKvxmBg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Jing</creator><creator>Lin, Kaixiong</creator><creator>Xi, Wenfei</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3612-2213</orcidid></search><sort><creationdate>20240601</creationdate><title>Weakly first-countability in strongly topological gyrogroups</title><author>Zhang, Jing ; Lin, Kaixiong ; Xi, Wenfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-556fe7b3ad9d83b8b043267cdffd8f5a973c0e5773302a346407c8d6174946a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>k-networks</topic><topic>Neutral strong subgyrogroups</topic><topic>Point-countable covers</topic><topic>Sequential spaces</topic><topic>Topological gyrogroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Lin, Kaixiong</creatorcontrib><creatorcontrib>Xi, Wenfei</creatorcontrib><collection>CrossRef</collection><jtitle>Topology and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Lin, Kaixiong</au><au>Xi, Wenfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakly first-countability in strongly topological gyrogroups</atitle><jtitle>Topology and its applications</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>350</volume><spage>108920</spage><pages>108920-</pages><artnum>108920</artnum><issn>0166-8641</issn><eissn>1879-3207</eissn><abstract>In this note, it is proved that (1) if (G,τ,⊕) is a strongly topological gyrogroup and H is a closed strong subgyrogroup of G, then G/H is κ-Fréchet-Urysohn if and only if G/H is strongly κ-Fréchet-Urysohn under the condition that H is neutral; (2) let H be a closed strong subgyrogroup of a strongly topological gyrogroup(G,τ,⊕), then the equality Δ(G/H)=ψ(G/H) holds when H is neutral; (3) if (G,τ,⊕) is a sequential strongly topological gyrogroup having a point-countable k-network, then G is metrizable or a topological sum of cosmic subspaces. There results improve the related results in topological groups.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.topol.2024.108920</doi><orcidid>https://orcid.org/0000-0003-3612-2213</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8641 |
ispartof | Topology and its applications, 2024-06, Vol.350, p.108920, Article 108920 |
issn | 0166-8641 1879-3207 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_topol_2024_108920 |
source | Elsevier |
subjects | k-networks Neutral strong subgyrogroups Point-countable covers Sequential spaces Topological gyrogroups |
title | Weakly first-countability in strongly topological gyrogroups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakly%20first-countability%20in%20strongly%20topological%20gyrogroups&rft.jtitle=Topology%20and%20its%20applications&rft.au=Zhang,%20Jing&rft.date=2024-06-01&rft.volume=350&rft.spage=108920&rft.pages=108920-&rft.artnum=108920&rft.issn=0166-8641&rft.eissn=1879-3207&rft_id=info:doi/10.1016/j.topol.2024.108920&rft_dat=%3Celsevier_cross%3ES0166864124001056%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-556fe7b3ad9d83b8b043267cdffd8f5a973c0e5773302a346407c8d6174946a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |