Loading…

A car-following model considering asymmetric driving behavior based on long short-term memory neural networks

•A long short-term memory (LSTM) neural networks based car-following model is proposed.•Three characteristics of the asymmetric driving behavior are investigated using LSTM.•The LSTM model outperforms other models in capturing the asymmetric driving behavior. Asymmetric driving behavior is a critica...

Full description

Saved in:
Bibliographic Details
Published in:Transportation research. Part C, Emerging technologies Emerging technologies, 2018-10, Vol.95, p.346-362
Main Authors: Huang, Xiuling, Sun, Jie, Sun, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•A long short-term memory (LSTM) neural networks based car-following model is proposed.•Three characteristics of the asymmetric driving behavior are investigated using LSTM.•The LSTM model outperforms other models in capturing the asymmetric driving behavior. Asymmetric driving behavior is a critical characteristic of human driving behaviors and has a significant impact on traffic flow. In consideration of the asymmetric driving behavior, this paper proposes a long short-term memory (LSTM) neural networks (NN) based car-following (CF) model to capture realistic traffic flow characteristics by incorporating the driving memory. The NGSIM data are used to calibrate and validate the proposed CF model. Meanwhile, three characteristics closely related to the asymmetric driving behavior are investigated: hysteresis, discrete driving, and intensity difference. The simulation results show the good performance of the proposed CF model on reproducing realistic traffic flow features. Moreover, to further demonstrate the superiority of the proposed CF model, two other CF models including recurrent neural network based CF model and asymmetric full velocity difference model, are compared with LSTM-NN model. The results reveal that LSTM-NN model can capture the asymmetric driving behavior well and outperforms other models.
ISSN:0968-090X
1879-2359
DOI:10.1016/j.trc.2018.07.022