Loading…
A car-following model considering asymmetric driving behavior based on long short-term memory neural networks
•A long short-term memory (LSTM) neural networks based car-following model is proposed.•Three characteristics of the asymmetric driving behavior are investigated using LSTM.•The LSTM model outperforms other models in capturing the asymmetric driving behavior. Asymmetric driving behavior is a critica...
Saved in:
Published in: | Transportation research. Part C, Emerging technologies Emerging technologies, 2018-10, Vol.95, p.346-362 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •A long short-term memory (LSTM) neural networks based car-following model is proposed.•Three characteristics of the asymmetric driving behavior are investigated using LSTM.•The LSTM model outperforms other models in capturing the asymmetric driving behavior.
Asymmetric driving behavior is a critical characteristic of human driving behaviors and has a significant impact on traffic flow. In consideration of the asymmetric driving behavior, this paper proposes a long short-term memory (LSTM) neural networks (NN) based car-following (CF) model to capture realistic traffic flow characteristics by incorporating the driving memory. The NGSIM data are used to calibrate and validate the proposed CF model. Meanwhile, three characteristics closely related to the asymmetric driving behavior are investigated: hysteresis, discrete driving, and intensity difference. The simulation results show the good performance of the proposed CF model on reproducing realistic traffic flow features. Moreover, to further demonstrate the superiority of the proposed CF model, two other CF models including recurrent neural network based CF model and asymmetric full velocity difference model, are compared with LSTM-NN model. The results reveal that LSTM-NN model can capture the asymmetric driving behavior well and outperforms other models. |
---|---|
ISSN: | 0968-090X 1879-2359 |
DOI: | 10.1016/j.trc.2018.07.022 |