Loading…
Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts
The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequent...
Saved in:
Published in: | Tribology international 2023-01, Vol.179, p.108166, Article 108166 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63 |
container_end_page | |
container_issue | |
container_start_page | 108166 |
container_title | Tribology international |
container_volume | 179 |
creator | Singh, A. Wolf, M. Jacobs, G. König, F. |
description | The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented.
•Local temperature detection in rolling contact bearings on the basis of TEHL simulations.•Efficient temperature prediction with a neural network-based surrogate model.•Influence of feature engineering on the performance of neural network model.•Impact of neural network architectures on the prediction accuracy. |
doi_str_mv | 10.1016/j.triboint.2022.108166 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_triboint_2022_108166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X2200737X</els_id><sourcerecordid>S0301679X2200737X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKt_QfIHtk42abJ7U0q1QsWLgreQZidtyu6mJqnov3dL69nTwDzem3kfIbcMJgyYvNtOcvSr4Ps8KaEsh2XFpDwjI1apuiiFFOdkBBxYIVX9cUmuUtoCgBK1GpHPF2M3vkfaoom979d0ZRI2NO1jDGuTkXahwbY9KC5EmjdIdxEbb7MPPQ2Odubbd_uO2tBnYzPN2O0wmryPSH1P54slbQ8HTnq6JhfOtAlvTnNM3h_nb7NFsXx9ep49LAvLWZmLqVBQW6OEqMoKhHUguHAVAFeCKweVEU4hNuBgaji3VeVYXcqa8QZXwkk-JvKYa2NIKaLTu-g7E380A30Ap7f6D5w-gNNHcIPx_mjE4bsvj1En67G3Q-mINusm-P8ifgHGknxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Singh, A. ; Wolf, M. ; Jacobs, G. ; König, F.</creator><creatorcontrib>Singh, A. ; Wolf, M. ; Jacobs, G. ; König, F.</creatorcontrib><description>The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented.
•Local temperature detection in rolling contact bearings on the basis of TEHL simulations.•Efficient temperature prediction with a neural network-based surrogate model.•Influence of feature engineering on the performance of neural network model.•Impact of neural network architectures on the prediction accuracy.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2022.108166</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Feature engineering ; Flash temperature ; Machine learning ; Rolling contact</subject><ispartof>Tribology international, 2023-01, Vol.179, p.108166, Article 108166</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63</citedby><cites>FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, A.</creatorcontrib><creatorcontrib>Wolf, M.</creatorcontrib><creatorcontrib>Jacobs, G.</creatorcontrib><creatorcontrib>König, F.</creatorcontrib><title>Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts</title><title>Tribology international</title><description>The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented.
•Local temperature detection in rolling contact bearings on the basis of TEHL simulations.•Efficient temperature prediction with a neural network-based surrogate model.•Influence of feature engineering on the performance of neural network model.•Impact of neural network architectures on the prediction accuracy.</description><subject>Feature engineering</subject><subject>Flash temperature</subject><subject>Machine learning</subject><subject>Rolling contact</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKt_QfIHtk42abJ7U0q1QsWLgreQZidtyu6mJqnov3dL69nTwDzem3kfIbcMJgyYvNtOcvSr4Ps8KaEsh2XFpDwjI1apuiiFFOdkBBxYIVX9cUmuUtoCgBK1GpHPF2M3vkfaoom979d0ZRI2NO1jDGuTkXahwbY9KC5EmjdIdxEbb7MPPQ2Odubbd_uO2tBnYzPN2O0wmryPSH1P54slbQ8HTnq6JhfOtAlvTnNM3h_nb7NFsXx9ep49LAvLWZmLqVBQW6OEqMoKhHUguHAVAFeCKweVEU4hNuBgaji3VeVYXcqa8QZXwkk-JvKYa2NIKaLTu-g7E380A30Ap7f6D5w-gNNHcIPx_mjE4bsvj1En67G3Q-mINusm-P8ifgHGknxA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Singh, A.</creator><creator>Wolf, M.</creator><creator>Jacobs, G.</creator><creator>König, F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202301</creationdate><title>Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts</title><author>Singh, A. ; Wolf, M. ; Jacobs, G. ; König, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Feature engineering</topic><topic>Flash temperature</topic><topic>Machine learning</topic><topic>Rolling contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, A.</creatorcontrib><creatorcontrib>Wolf, M.</creatorcontrib><creatorcontrib>Jacobs, G.</creatorcontrib><creatorcontrib>König, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, A.</au><au>Wolf, M.</au><au>Jacobs, G.</au><au>König, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts</atitle><jtitle>Tribology international</jtitle><date>2023-01</date><risdate>2023</risdate><volume>179</volume><spage>108166</spage><pages>108166-</pages><artnum>108166</artnum><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented.
•Local temperature detection in rolling contact bearings on the basis of TEHL simulations.•Efficient temperature prediction with a neural network-based surrogate model.•Influence of feature engineering on the performance of neural network model.•Impact of neural network architectures on the prediction accuracy.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2022.108166</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-679X |
ispartof | Tribology international, 2023-01, Vol.179, p.108166, Article 108166 |
issn | 0301-679X 1879-2464 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_triboint_2022_108166 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Feature engineering Flash temperature Machine learning Rolling contact |
title | Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20based%20surrogate%20modelling%20for%20the%20prediction%20of%20maximum%20contact%20temperature%20in%20EHL%20line%20contacts&rft.jtitle=Tribology%20international&rft.au=Singh,%20A.&rft.date=2023-01&rft.volume=179&rft.spage=108166&rft.pages=108166-&rft.artnum=108166&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2022.108166&rft_dat=%3Celsevier_cross%3ES0301679X2200737X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |