Loading…

Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts

The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequent...

Full description

Saved in:
Bibliographic Details
Published in:Tribology international 2023-01, Vol.179, p.108166, Article 108166
Main Authors: Singh, A., Wolf, M., Jacobs, G., König, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63
cites cdi_FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63
container_end_page
container_issue
container_start_page 108166
container_title Tribology international
container_volume 179
creator Singh, A.
Wolf, M.
Jacobs, G.
König, F.
description The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented. •Local temperature detection in rolling contact bearings on the basis of TEHL simulations.•Efficient temperature prediction with a neural network-based surrogate model.•Influence of feature engineering on the performance of neural network model.•Impact of neural network architectures on the prediction accuracy.
doi_str_mv 10.1016/j.triboint.2022.108166
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_triboint_2022_108166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X2200737X</els_id><sourcerecordid>S0301679X2200737X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKt_QfIHtk42abJ7U0q1QsWLgreQZidtyu6mJqnov3dL69nTwDzem3kfIbcMJgyYvNtOcvSr4Ps8KaEsh2XFpDwjI1apuiiFFOdkBBxYIVX9cUmuUtoCgBK1GpHPF2M3vkfaoom979d0ZRI2NO1jDGuTkXahwbY9KC5EmjdIdxEbb7MPPQ2Odubbd_uO2tBnYzPN2O0wmryPSH1P54slbQ8HTnq6JhfOtAlvTnNM3h_nb7NFsXx9ep49LAvLWZmLqVBQW6OEqMoKhHUguHAVAFeCKweVEU4hNuBgaji3VeVYXcqa8QZXwkk-JvKYa2NIKaLTu-g7E380A30Ap7f6D5w-gNNHcIPx_mjE4bsvj1En67G3Q-mINusm-P8ifgHGknxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Singh, A. ; Wolf, M. ; Jacobs, G. ; König, F.</creator><creatorcontrib>Singh, A. ; Wolf, M. ; Jacobs, G. ; König, F.</creatorcontrib><description>The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented. •Local temperature detection in rolling contact bearings on the basis of TEHL simulations.•Efficient temperature prediction with a neural network-based surrogate model.•Influence of feature engineering on the performance of neural network model.•Impact of neural network architectures on the prediction accuracy.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2022.108166</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Feature engineering ; Flash temperature ; Machine learning ; Rolling contact</subject><ispartof>Tribology international, 2023-01, Vol.179, p.108166, Article 108166</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63</citedby><cites>FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, A.</creatorcontrib><creatorcontrib>Wolf, M.</creatorcontrib><creatorcontrib>Jacobs, G.</creatorcontrib><creatorcontrib>König, F.</creatorcontrib><title>Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts</title><title>Tribology international</title><description>The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented. •Local temperature detection in rolling contact bearings on the basis of TEHL simulations.•Efficient temperature prediction with a neural network-based surrogate model.•Influence of feature engineering on the performance of neural network model.•Impact of neural network architectures on the prediction accuracy.</description><subject>Feature engineering</subject><subject>Flash temperature</subject><subject>Machine learning</subject><subject>Rolling contact</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKt_QfIHtk42abJ7U0q1QsWLgreQZidtyu6mJqnov3dL69nTwDzem3kfIbcMJgyYvNtOcvSr4Ps8KaEsh2XFpDwjI1apuiiFFOdkBBxYIVX9cUmuUtoCgBK1GpHPF2M3vkfaoom979d0ZRI2NO1jDGuTkXahwbY9KC5EmjdIdxEbb7MPPQ2Odubbd_uO2tBnYzPN2O0wmryPSH1P54slbQ8HTnq6JhfOtAlvTnNM3h_nb7NFsXx9ep49LAvLWZmLqVBQW6OEqMoKhHUguHAVAFeCKweVEU4hNuBgaji3VeVYXcqa8QZXwkk-JvKYa2NIKaLTu-g7E380A30Ap7f6D5w-gNNHcIPx_mjE4bsvj1En67G3Q-mINusm-P8ifgHGknxA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Singh, A.</creator><creator>Wolf, M.</creator><creator>Jacobs, G.</creator><creator>König, F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202301</creationdate><title>Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts</title><author>Singh, A. ; Wolf, M. ; Jacobs, G. ; König, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Feature engineering</topic><topic>Flash temperature</topic><topic>Machine learning</topic><topic>Rolling contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, A.</creatorcontrib><creatorcontrib>Wolf, M.</creatorcontrib><creatorcontrib>Jacobs, G.</creatorcontrib><creatorcontrib>König, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, A.</au><au>Wolf, M.</au><au>Jacobs, G.</au><au>König, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts</atitle><jtitle>Tribology international</jtitle><date>2023-01</date><risdate>2023</risdate><volume>179</volume><spage>108166</spage><pages>108166-</pages><artnum>108166</artnum><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented. •Local temperature detection in rolling contact bearings on the basis of TEHL simulations.•Efficient temperature prediction with a neural network-based surrogate model.•Influence of feature engineering on the performance of neural network model.•Impact of neural network architectures on the prediction accuracy.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2022.108166</doi></addata></record>
fulltext fulltext
identifier ISSN: 0301-679X
ispartof Tribology international, 2023-01, Vol.179, p.108166, Article 108166
issn 0301-679X
1879-2464
language eng
recordid cdi_crossref_primary_10_1016_j_triboint_2022_108166
source ScienceDirect Freedom Collection 2022-2024
subjects Feature engineering
Flash temperature
Machine learning
Rolling contact
title Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20based%20surrogate%20modelling%20for%20the%20prediction%20of%20maximum%20contact%20temperature%20in%20EHL%20line%20contacts&rft.jtitle=Tribology%20international&rft.au=Singh,%20A.&rft.date=2023-01&rft.volume=179&rft.spage=108166&rft.pages=108166-&rft.artnum=108166&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2022.108166&rft_dat=%3Celsevier_cross%3ES0301679X2200737X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-54709ca74482804cf0434f80037437f08a4f7eed0f05a33c88f1926913deb4f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true